VCF class: different length when unlisting INFO CompressedCharacterList
1
0
Entering edit mode
Sigve Nakken ▴ 50
@sigve-nakken-6575
Last seen 2.1 years ago
Norway
How do I access the ID column of the VCF when using readVcfAsVranges? I cannot seem to find these values in the resulting VRanges object. best, Sigve On 28 May 2014, at 01:01, Michael Lawrence <lawrence.michael@gene.com> wrote: > I think you want to use VRanges. See ?VRanges. You can use readVcfAsVRanges to get one from a VCF. It expands samples, i.e., it is a long-form tabular representation of the VCF file. It has explicit columns for the read depths, but it takes them from the conventional "AD" geno field, while you have paired tumor/normal in ADC and ADT. So you won't be able to use those convenience fields out of the box, but ADC and ADT will at least land in the mcols, which is probably sufficient for your purposes. > > Please let me know how it goes, > Michael > > > > On Mon, May 26, 2014 at 6:15 AM, Sigve Nakken <sigven@ifi.uio.no> wrote: > Hi, > > I’ve had similar challenges as Francesco, and have unsuccessfully tried to use the data structures and functions provided by VariantAnnotation. My experience is that I need the ‘expand' functionality more often with respect to the samples rather than the annotation tags. And as my experience with R is somewhat limited, I tend to like to work with simple data.frames when I want to summarise and characterise the data. > > Here is how I generated a simple data frame with all sample variants (variants and samples are dummy encoded): > > ## read VCF (100 samples) > > all_vcf <- readVcf(‘cancer.exome.project.vcf.gz','hg19') > > seqinfo(all_vcf) <- seqinfo(BSgenome.Hsapiens.UCSC.hg19) > > rowData(all_vcf) > GRanges with 50383 ranges and 5 metadata columns: > > > ## get variants with ‘PASS’ filter > > all_vcf_PASS <- all_vcf[str_detect(elementMetadata(all_vcf)$FILTER,"PASS"),] > > rowData(all_vcf_PASS) > GRanges with 4252 ranges and 5 metadata columns: > ... > > > ## get genotype information for all samples that have called genotypes (GT != ‘.’) > ## From my VCF: > ## FORMAT=<id=adt,number=.,type=integer,description="allelic depths="" for="" the="" ref="" and="" alt="" alleles="" in="" the="" order="" listed="" (tumor)"=""> > ## FORMAT=<id=gt,number=1,type=string,description="genotype"> > ## FORMAT=<id=adc,number=.,type=integer,description="allelic depths="" for="" the="" ref="" and="" alt="" alleles="" in="" the="" order="" listed="" (control)"=""> > ## > > tumor_ref_support <- t(as.data.frame(geno(all_vcf_PASS)$ADT[which(geno(all_vcf_PASS)$GT != '.', arr.ind=T)],row.names=NULL)[1,]) > > normal_ref_support <- t(as.data.frame(geno(all_vcf_PASS)$ADC[which(geno(all_vcf_PASS)$GT != '.', arr.ind=T)],row.names=NULL)[1,]) > > tumor_alt_support <- t(as.data.frame(geno(all_vcf_PASS)$ADT[which(geno(all_vcf_PASS)$GT != '.', arr.ind=T)],row.names=NULL)[2,]) > > normal_alt_support <- t(as.data.frame(geno(all_vcf_PASS)$ADC[which(geno(all_vcf_PASS)$GT != '.', arr.ind=T)],row.names=NULL)[2,]) > > ## get sample ids and variant ids for the ‘expanded set of variants' > > b <- as.data.frame(which(geno(all_vcf_PASS)$GT != '.', arr.ind=T))$col > > c <- as.data.frame(which(geno(all_vcf_PASS)$GT != '.', arr.ind=T))$row > > sample_ids <- as.data.frame(rownames(colData(all_vcf_PASS))[b]) > > variant_ids <- as.data.frame(rownames(geno(all_vcf_PASS)$GT)[c]) > > > ## make simple data.frame of all samples with genotype information > > row.names(tumor_ref_support) <- NULL > > row.names(normal_ref_support) <- NULL > > row.names(tumor_alt_support) <- NULL > > row.names(external_passed) <- NULL > > row.names(normal_alt_support) <- NULL > > > tmp <- as.data.frame(cbind(variant_ids,sample_ids,tumor_ref_suppor t,tumor_alt_support,normal_ref_support,normal_alt_support)) > > colnames(tmp) <- c('variant_id','sample_id','tumor_ref_support','t umor_alt_support','normal_ref_support','normal_alt_support') > > tmp$allele_frac_tumor <- rep(0,nrow(tmp)) > > tmp$tumor_depth <- tmp$tumor_ref_support + tmp$tumor_alt_support > > tmp$normal_depth <- tmp$normal_ref_support + tmp$normal_alt_support > > tmp[tmp$tumor_depth > 0,]$allele_frac_tumor <- round(tmp[tmp$tumor_depth > 0,]$tumor_alt_support / tmp[tmp$tumor_depth > 0,]$tumor_depth,2) > > ## > > head(tmp) > variant_id sample_id tumor_ref_support tumor_alt_support normal_ref_support normal_alt_support allele_frac_tumor tumor_depth normal_depth > 1 chr5_10000000_T_C 001B_001T 17 7 21 0 0.29 24 21 > 2 chr11_10000000_C_T 001B_001T 31 4 33 0 0.11 35 33 > 3 chr18_10000000_C_T 001B_001T 21 7 37 1 0.25 28 38 > 4 chrY_1000000_A_G 001B_001T 10 2 11 0 0.17 12 11 > 5 chr1_1000000_G_C 011B_011T 17 3 48 0 0.15 20 48 > 6 chr1_1000000_A_G 011B_011T 77 13 114 0 0.14 90 114 > > > str(tmp) > 'data.frame': 4418 obs. of 9 variables: > $ variant_id : Factor w/ 4252 levels "chr1_1000000_G_T",..: 3254 620 1644 4251 359 381 391 401 246 1875 ... > $ sample_id : Factor w/ 99 levels "001B_001T","011B_011T",..: 1 1 1 1 2 2 2 2 2 2 ... > $ tumor_ref_support : int 17 31 21 10 17 77 12 40 75 53 ... > $ tumor_alt_support : int 7 4 7 2 3 13 3 6 8 9 ... > $ normal_ref_support: int 21 33 37 11 48 114 19 52 88 89 ... > $ normal_alt_support: int 0 0 1 0 0 0 0 0 0 0 ... > $ allele_frac_tumor : num 0.29 0.11 0.25 0.17 0.15 0.14 0.2 0.13 0.1 0.15 ... > $ tumor_depth : int 24 35 28 12 20 90 15 46 83 62 ... > $ normal_depth : int 21 33 38 11 48 114 19 52 88 89 ... > > Next, I plan to do a merge with my functional annotations (info) using the variant_id as the key, which I think would be straightforward. > > If there is a more convenient way to get here using the VariantAnnotation package, I would be grateful to hear about this. > > --- > Sigve Nakken, PhD > Postdoctoral Fellow, Dept. of Tumor Biology > Institute for Cancer Research > Oslo University Hospital, Norway > phone: +4795753022 > email: sigven@ifi.uio.no > > > > > > > [[alternative HTML version deleted]] > > > _______________________________________________ > Bioconductor mailing list > Bioconductor@r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor > [[alternative HTML version deleted]]
Cancer Cancer • 1.1k views
ADD COMMENT
0
Entering edit mode
@michael-lawrence-3846
Last seen 3.0 years ago
United States
The IDs are currently not imported. The reasoning was that the IDs are usually ".", which causes the VCF object to have imputed CHR:POS_REF/ALT rownames that are redundant with the other columns in the VRanges (essentially deadweight and clutter). One solution would be for ScanVcfParam to gain a "use.names" (or whatever name) slot that if FALSE would result in NULL rownames (this would be generally useful to avoid the string overhead). TRUE would be the default, but readVcfAsVRanges() would use FALSE by default. Then, as(vcf, "VRanges") would be changed to always carry over the rownames to the names on the VRanges. Sigve would pass to TRUE to get the desired result. What do you think, Valerie? Michael On Mon, Jun 9, 2014 at 5:30 AM, Sigve Nakken <sigven@ifi.uio.no> wrote: > How do I access the ID column of the VCF when using readVcfAsVranges? I > cannot seem to find these values in the resulting VRanges object. > > best, > Sigve > > On 28 May 2014, at 01:01, Michael Lawrence <lawrence.michael@gene.com> > wrote: > > I think you want to use VRanges. See ?VRanges. You can use > readVcfAsVRanges to get one from a VCF. It expands samples, i.e., it is a > long-form tabular representation of the VCF file. It has explicit columns > for the read depths, but it takes them from the conventional "AD" geno > field, while you have paired tumor/normal in ADC and ADT. So you won't be > able to use those convenience fields out of the box, but ADC and ADT will > at least land in the mcols, which is probably sufficient for your purposes. > > Please let me know how it goes, > Michael > > > > On Mon, May 26, 2014 at 6:15 AM, Sigve Nakken <sigven@ifi.uio.no> wrote: > >> Hi, >> >> I’ve had similar challenges as Francesco, and have unsuccessfully tried >> to use the data structures and functions provided by VariantAnnotation. My >> experience is that I need the ‘expand' functionality more often with >> respect to the samples rather than the annotation tags. And as my >> experience with R is somewhat limited, I tend to like to work with simple >> data.frames when I want to summarise and characterise the data. >> >> Here is how I generated a simple data frame with all sample variants >> (variants and samples are dummy encoded): >> >> ## read VCF (100 samples) >> > all_vcf <- readVcf(‘cancer.exome.project.vcf.gz','hg19') >> > seqinfo(all_vcf) <- seqinfo(BSgenome.Hsapiens.UCSC.hg19) >> > rowData(all_vcf) >> GRanges with 50383 ranges and 5 metadata columns: >> … >> >> ## get variants with ‘PASS’ filter >> > all_vcf_PASS <- >> all_vcf[str_detect(elementMetadata(all_vcf)$FILTER,"PASS"),] >> > rowData(all_vcf_PASS) >> GRanges with 4252 ranges and 5 metadata columns: >> ... >> >> >> ## get genotype information for all samples that have called genotypes >> (GT != ‘.’) >> ## From my VCF: >> ## FORMAT=<id=adt,number=.,type=integer,description="allelic depths="" for="">> the ref and alt alleles in the order listed (tumor)"> >> ## FORMAT=<id=gt,number=1,type=string,description="genotype"> >> ## FORMAT=<id=adc,number=.,type=integer,description="allelic depths="" for="">> the ref and alt alleles in the order listed (control)"> >> ## >> > tumor_ref_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADT[which(geno(all_vcf_PASS)$GT != '.', >> arr.ind=T)],row.names=NULL)[1,]) >> > normal_ref_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADC[which(geno(all_vcf_PASS)$GT != '.', >> arr.ind=T)],row.names=NULL)[1,]) >> > tumor_alt_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADT[which(geno(all_vcf_PASS)$GT != '.', >> arr.ind=T)],row.names=NULL)[2,]) >> > normal_alt_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADC[which(geno(all_vcf_PASS)$GT != '.', >> arr.ind=T)],row.names=NULL)[2,]) >> >> ## get sample ids and variant ids for the ‘expanded set of variants' >> > b <- as.data.frame(which(geno(all_vcf_PASS)$GT != '.', arr.ind=T))$col >> > c <- as.data.frame(which(geno(all_vcf_PASS)$GT != '.', arr.ind=T))$row >> > sample_ids <- as.data.frame(rownames(colData(all_vcf_PASS))[b]) >> > variant_ids <- as.data.frame(rownames(geno(all_vcf_PASS)$GT)[c]) >> >> >> ## make simple data.frame of all samples with genotype information >> > row.names(tumor_ref_support) <- NULL >> > row.names(normal_ref_support) <- NULL >> > row.names(tumor_alt_support) <- NULL >> > row.names(external_passed) <- NULL >> > row.names(normal_alt_support) <- NULL >> >> > tmp <- >> as.data.frame(cbind(variant_ids,sample_ids,tumor_ref_support,tumor_ alt_support,normal_ref_support,normal_alt_support)) >> > colnames(tmp) <- >> c('variant_id','sample_id','tumor_ref_support','tumor_alt_support', 'normal_ref_support','normal_alt_support') >> > tmp$allele_frac_tumor <- rep(0,nrow(tmp)) >> > tmp$tumor_depth <- tmp$tumor_ref_support + tmp$tumor_alt_support >> > tmp$normal_depth <- tmp$normal_ref_support + tmp$normal_alt_support >> > tmp[tmp$tumor_depth > 0,]$allele_frac_tumor <- >> round(tmp[tmp$tumor_depth > 0,]$tumor_alt_support / tmp[tmp$tumor_depth > >> 0,]$tumor_depth,2) >> >> ## >> > head(tmp) >> variant_id sample_id tumor_ref_support tumor_alt_support >> normal_ref_support normal_alt_support allele_frac_tumor tumor_depth >> normal_depth >> 1 chr5_10000000_T_C 001B_001T 17 7 >> 21 0 0.29 24 21 >> 2 chr11_10000000_C_T 001B_001T 31 4 >> 33 0 0.11 35 33 >> 3 chr18_10000000_C_T 001B_001T 21 7 >> 37 1 0.25 28 38 >> 4 chrY_1000000_A_G 001B_001T 10 2 >> 11 0 0.17 12 11 >> 5 chr1_1000000_G_C 011B_011T 17 3 >> 48 0 0.15 20 48 >> 6 chr1_1000000_A_G 011B_011T 77 13 >> 114 0 0.14 90 114 >> >> > str(tmp) >> 'data.frame': 4418 obs. of 9 variables: >> $ variant_id : Factor w/ 4252 levels "chr1_1000000_G_T",..: 3254 >> 620 1644 4251 359 381 391 401 246 1875 ... >> $ sample_id : Factor w/ 99 levels "001B_001T","011B_011T",..: 1 >> 1 1 1 2 2 2 2 2 2 ... >> $ tumor_ref_support : int 17 31 21 10 17 77 12 40 75 53 ... >> $ tumor_alt_support : int 7 4 7 2 3 13 3 6 8 9 ... >> $ normal_ref_support: int 21 33 37 11 48 114 19 52 88 89 ... >> $ normal_alt_support: int 0 0 1 0 0 0 0 0 0 0 ... >> $ allele_frac_tumor : num 0.29 0.11 0.25 0.17 0.15 0.14 0.2 0.13 0.1 >> 0.15 ... >> $ tumor_depth : int 24 35 28 12 20 90 15 46 83 62 ... >> $ normal_depth : int 21 33 38 11 48 114 19 52 88 89 ... >> >> Next, I plan to do a merge with my functional annotations (info) using >> the variant_id as the key, which I think would be straightforward. >> >> If there is a more convenient way to get here using the VariantAnnotation >> package, I would be grateful to hear about this. >> >> --- >> Sigve Nakken, PhD >> Postdoctoral Fellow, Dept. of Tumor Biology >> Institute for Cancer Research >> Oslo University Hospital, Norway >> phone: +4795753022 >> email: sigven@ifi.uio.no >> >> >> >> >> >> >> [[alternative HTML version deleted]] >> >> >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor@r-project.org >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: >> http://news.gmane.org/gmane.science.biology.informatics.conductor >> > > > > > > [[alternative HTML version deleted]]
ADD COMMENT
0
Entering edit mode
I agree, an option to control rownames is a good idea. In 1.11.9 I've added 'row.names' (default TRUE) to readVcf(). The arg was added to the function instead of the param because we have the precedent of 'row.names' in readGT(), readInfo() and readGeno(). Valerie On 06/09/2014 09:01 AM, Michael Lawrence wrote: > The IDs are currently not imported. The reasoning was that the IDs are > usually ".", which causes the VCF object to have imputed CHR:POS_REF/ALT > rownames that are redundant with the other columns in the VRanges > (essentially deadweight and clutter). One solution would be for > ScanVcfParam to gain a "use.names" (or whatever name) slot that if FALSE > would result in NULL rownames (this would be generally useful to avoid > the string overhead). TRUE would be the default, but readVcfAsVRanges() > would use FALSE by default. Then, as(vcf, "VRanges") would be changed to > always carry over the rownames to the names on the VRanges. Sigve would > pass to TRUE to get the desired result. > > What do you think, Valerie? > > Michael > > > On Mon, Jun 9, 2014 at 5:30 AM, Sigve Nakken <sigven at="" ifi.uio.no=""> <mailto:sigven at="" ifi.uio.no="">> wrote: > > How do I access the ID column of the VCF when using > readVcfAsVranges? I cannot seem to find these values in the > resulting VRanges object. > > best, > Sigve > > On 28 May 2014, at 01:01, Michael Lawrence > <lawrence.michael at="" gene.com="" <mailto:lawrence.michael="" at="" gene.com="">> wrote: > >> I think you want to use VRanges. See ?VRanges. You can use >> readVcfAsVRanges to get one from a VCF. It expands samples, i.e., >> it is a long-form tabular representation of the VCF file. It has >> explicit columns for the read depths, but it takes them from the >> conventional "AD" geno field, while you have paired tumor/normal >> in ADC and ADT. So you won't be able to use those convenience >> fields out of the box, but ADC and ADT will at least land in the >> mcols, which is probably sufficient for your purposes. >> >> Please let me know how it goes, >> Michael >> >> >> >> On Mon, May 26, 2014 at 6:15 AM, Sigve Nakken <sigven at="" ifi.uio.no="">> <mailto:sigven at="" ifi.uio.no="">> wrote: >> >> Hi, >> >> I?ve had similar challenges as Francesco, and have >> unsuccessfully tried to use the data structures and functions >> provided by VariantAnnotation. My experience is that I need >> the ?expand' functionality more often with respect to the >> samples rather than the annotation tags. And as my experience >> with R is somewhat limited, I tend to like to work with simple >> data.frames when I want to summarise and characterise the data. >> >> Here is how I generated a simple data frame with all sample >> variants (variants and samples are dummy encoded): >> >> ## read VCF (100 samples) >> > all_vcf <- readVcf(?cancer.exome.project.vcf.gz','hg19') >> > seqinfo(all_vcf) <- seqinfo(BSgenome.Hsapiens.UCSC.hg19) >> > rowData(all_vcf) >> GRanges with 50383 ranges and 5 metadata columns: >> ? >> >> ## get variants with ?PASS? filter >> > all_vcf_PASS <- >> all_vcf[str_detect(elementMetadata(all_vcf)$FILTER,"PASS"),] >> > rowData(all_vcf_PASS) >> GRanges with 4252 ranges and 5 metadata columns: >> ... >> >> >> ## get genotype information for all samples that have called >> genotypes (GT != ?.?) >> ## From my VCF: >> ## FORMAT=<id=adt,number=.,type=integer,description="allelic>> depths for the ref and alt alleles in the order listed (tumor)"> >> ## FORMAT=<id=gt,number=1,type=string,description="genotype"> >> ## FORMAT=<id=adc,number=.,type=integer,description="allelic>> depths for the ref and alt alleles in the order listed (control)"> >> ## >> > tumor_ref_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADT[which(geno(all_vcf_PASS)$GT >> != '.', arr.ind=T)],row.names=NULL)[1,]) >> > normal_ref_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADC[which(geno(all_vcf_PASS)$GT >> != '.', arr.ind=T)],row.names=NULL)[1,]) >> > tumor_alt_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADT[which(geno(all_vcf_PASS)$GT >> != '.', arr.ind=T)],row.names=NULL)[2,]) >> > normal_alt_support <- >> t(as.data.frame(geno(all_vcf_PASS)$ADC[which(geno(all_vcf_PASS)$GT >> != '.', arr.ind=T)],row.names=NULL)[2,]) >> >> ## get sample ids and variant ids for the ?expanded set of >> variants' >> > b <- as.data.frame(which(geno(all_vcf_PASS)$GT != '.', >> arr.ind=T))$col >> > c <- as.data.frame(which(geno(all_vcf_PASS)$GT != '.', >> arr.ind=T))$row >> > sample_ids <- as.data.frame(rownames(colData(all_vcf_PASS))[b]) >> > variant_ids <- as.data.frame(rownames(geno(all_vcf_PASS)$GT)[c]) >> >> >> ## make simple data.frame of all samples with genotype information >> > row.names(tumor_ref_support) <- NULL >> > row.names(normal_ref_support) <- NULL >> > row.names(tumor_alt_support) <- NULL >> > row.names(external_passed) <- NULL >> > row.names(normal_alt_support) <- NULL >> >> > tmp <- >> as.data.frame(cbind(variant_ids,sample_ids,tumor_ref_suppor t,tumor_alt_support,normal_ref_support,normal_alt_support)) >> > colnames(tmp) <- >> c('variant_id','sample_id','tumor_ref_support','tumor_alt_s upport','normal_ref_support','normal_alt_support') >> > tmp$allele_frac_tumor <- rep(0,nrow(tmp)) >> > tmp$tumor_depth <- tmp$tumor_ref_support + tmp$tumor_alt_support >> > tmp$normal_depth <- tmp$normal_ref_support + >> tmp$normal_alt_support >> > tmp[tmp$tumor_depth > 0,]$allele_frac_tumor <- >> round(tmp[tmp$tumor_depth > 0,]$tumor_alt_support / >> tmp[tmp$tumor_depth > 0,]$tumor_depth,2) >> >> ## >> > head(tmp) >> variant_id sample_id tumor_ref_support >> tumor_alt_support normal_ref_support normal_alt_support >> allele_frac_tumor tumor_depth normal_depth >> 1 chr5_10000000_T_C 001B_001T 17 >> 7 21 0 0.29 >> 24 21 >> 2 chr11_10000000_C_T 001B_001T 31 >> 4 33 0 0.11 >> 35 33 >> 3 chr18_10000000_C_T 001B_001T 21 >> 7 37 1 0.25 >> 28 38 >> 4 chrY_1000000_A_G 001B_001T 10 >> 2 11 0 0.17 >> 12 11 >> 5 chr1_1000000_G_C 011B_011T 17 >> 3 48 0 0.15 >> 20 48 >> 6 chr1_1000000_A_G 011B_011T 77 >> 13 114 0 0.14 >> 90 114 >> >> > str(tmp) >> 'data.frame': 4418 obs. of 9 variables: >> $ variant_id : Factor w/ 4252 levels >> "chr1_1000000_G_T",..: 3254 620 1644 4251 359 381 391 401 246 >> 1875 ... >> $ sample_id : Factor w/ 99 levels >> "001B_001T","011B_011T",..: 1 1 1 1 2 2 2 2 2 2 ... >> $ tumor_ref_support : int 17 31 21 10 17 77 12 40 75 53 ... >> $ tumor_alt_support : int 7 4 7 2 3 13 3 6 8 9 ... >> $ normal_ref_support: int 21 33 37 11 48 114 19 52 88 89 ... >> $ normal_alt_support: int 0 0 1 0 0 0 0 0 0 0 ... >> $ allele_frac_tumor : num 0.29 0.11 0.25 0.17 0.15 0.14 0.2 >> 0.13 0.1 0.15 ... >> $ tumor_depth : int 24 35 28 12 20 90 15 46 83 62 ... >> $ normal_depth : int 21 33 38 11 48 114 19 52 88 89 ... >> >> Next, I plan to do a merge with my functional annotations >> (info) using the variant_id as the key, which I think would be >> straightforward. >> >> If there is a more convenient way to get here using the >> VariantAnnotation package, I would be grateful to hear about this. >> >> --- >> Sigve Nakken, PhD >> Postdoctoral Fellow, Dept. of Tumor Biology >> Institute for Cancer Research >> Oslo University Hospital, Norway >> phone: +4795753022 <tel:%2b4795753022> >> email: sigven at ifi.uio.no <mailto:sigven at="" ifi.uio.no=""> >> >> >> >> >> >> >> [[alternative HTML version deleted]] >> >> >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor at r-project.org <mailto:bioconductor at="" r-project.org=""> >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: >> http://news.gmane.org/gmane.science.biology.informatics.conductor >> >> > > > > > -- Valerie Obenchain Program in Computational Biology Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N, Seattle, WA 98109 Email: vobencha at fhcrc.org Phone: (206) 667-3158
ADD REPLY

Login before adding your answer.

Traffic: 570 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6