Entering edit mode
Giovanni Bucci
▴
60
@giovanni-bucci-6524
Last seen 10.6 years ago
Hello everybody,
I have 32 samples, 4 factors with 2 levels each. Each level has 2
replicates.
>str(gxexprs)
num [1:15584, 1:32] 7.94 6.67 9.93 9.62 12.19 ...
>Group
[1] R52VQ R52VQ R52VE R52VE R52EQ R52EQ R52EE R52EE R95VQ R95VQ R95VQ
R95VE
[13] R95VE R95VE R95EQ R95EQ R95EQ R95EE R95EE R95EE R97VQ R97VQ R97VQ
R97VE
[25] R97VE R97VE R97EQ R97EQ R97EQ R97EE R97EE R97EE
16 Levels: R52VQ R52VE R52EQ R52EE R95VQ R95VE R95EQ R95EE R97VQ ...
R97EE
design <- model.matrix(~0+Group)
fit <- lmFit(gxexprs, design)
contrast.matrix <- makeContrasts(contrasts="R52VQ -
R52VE",levels=design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
TTable = topTable(fit2)
global_p_val = TTable$P.Val
gxexprs = gxexprs[, 1:4]
## same code as above but the expression matrix has only the first 4
columns which represent the contrast tested above
design <- model.matrix(~0+Group)
fit <- lmFit(gxexprs, design)
contrast.matrix <- makeContrasts(contrasts="R52VQ -
R52VE",levels=design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
TTable = topTable(fit2)
local_p_val = TTable$P.Val
local_p_val has much greater values than global_p_val even though they
represent the same comparison.
What is the explanation for this?
Can you point to some diagnostic functions that will show the
difference?
Thank you,
Giovanni
[[alternative HTML version deleted]]