Entering edit mode
Hi,
Is it neccessary to have entrez gene IDs to work with this package?
I am working on a dataset with Ensembl IDs. Do I need to convert them
to
Entrez?
When trying to create a report for a DESeqDataSet or DESeqResults
objects i
am getting the error messege:
Error: Ids do not appear to be Entrez Ids for the specified species.
Is there a way to work straight with the ensembl IDs?
Thanks
Assa
my script:
head(Counts_set)
A_pKO_aV_FCS G_pKO_aV_FCS M_pKO_aV_FCS D_pKO_aV
J_pKO_aV
ENSMUSG00000000001 4744 4632 4535 4748
3736
ENSMUSG00000000003 0 0 0 0
0
ENSMUSG00000000028 1246 1420 1429 2304
1261
ENSMUSG00000000031 3 25 65 0
50
ENSMUSG00000000037 0 0 0 0
0
ENSMUSG00000000049 0 0 3 1
3
cds <- DESeqDataSetFromMatrix (
countData = Counts_set,
colData = colData,
design = ~ condition
)
fit = DESeq(cds)
des2Report <- HTMLReport(shortName =paste('RNAseq_analysis_', group1,
"_",
group2, sep=""),title ='RNA-seq analysis of differential expression
using
DESeq2',reportDirectory = "./reports")
publish(fit,des2Report,
pvalueCutoff=0.05,annotation.db="org.Mm.eg.db",
factor = colData(fit)$condition,reportDir="./reports")
Error: Ids do not appear to be Entrez Ids for the specified species.
finish(des2Report)
> sessionInfo()
R version 3.1.0 (2014-04-10)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats graphics grDevices utils datasets
methods
[8] base
other attached packages:
[1] org.Mm.eg.db_2.14.0 ReportingTools_2.4.0
AnnotationDbi_1.26.0
[4] Biobase_2.24.0 RSQLite_0.11.4 DBI_0.2-7
[7] knitr_1.5 DESeq2_1.4.0
RcppArmadillo_0.4.200.0
[10] Rcpp_0.11.1 GenomicRanges_1.16.2
GenomeInfoDb_1.0.2
[13] IRanges_1.22.3 BiocGenerics_0.10.0
loaded via a namespace (and not attached):
[1] annotate_1.42.0 AnnotationForge_1.6.0
BatchJobs_1.2
[4] BBmisc_1.5 BiocParallel_0.6.0
biomaRt_2.20.0
[7] Biostrings_2.32.0 biovizBase_1.12.0
bitops_1.0-6
[10] brew_1.0-6 BSgenome_1.32.0
Category_2.30.0
[13] cluster_1.14.4 codetools_0.2-8
colorspace_1.2-4
[16] dichromat_2.0-0 digest_0.6.4
edgeR_3.6.0
[19] evaluate_0.5.3 fail_1.2
foreach_1.4.2
[22] formatR_0.10 Formula_1.1-1
genefilter_1.46.0
[25] geneplotter_1.42.0 GenomicAlignments_1.0.0
GenomicFeatures_1.16.0
[28] ggbio_1.12.0 ggplot2_0.9.3.1
GO.db_2.14.0
[31] GOstats_2.30.0 graph_1.42.0
grid_3.1.0
[34] gridExtra_0.9.1 GSEABase_1.26.0
gtable_0.1.2
[37] Hmisc_3.14-4 hwriter_1.3
iterators_1.0.7
[40] lattice_0.20-24 latticeExtra_0.6-26
limma_3.20.1
[43] locfit_1.5-9.1 MASS_7.3-29
Matrix_1.1-2
[46] munsell_0.4.2 PFAM.db_2.14.0
plyr_1.8.1
[49] proto_0.3-10 RBGL_1.40.0
RColorBrewer_1.0-5
[52] RCurl_1.95-4.1 reshape2_1.2.2
R.methodsS3_1.6.1
[55] R.oo_1.18.0 Rsamtools_1.16.0
rtracklayer_1.24.0
[58] R.utils_1.29.8 scales_0.2.4
sendmailR_1.1-2
[61] splines_3.1.0 stats4_3.1.0
stringr_0.6.2
[64] survival_2.37-7 tools_3.1.0
VariantAnnotation_1.10.0
[67] XML_3.98-1.1 xtable_1.7-3
XVector_0.4.0
[70] zlibbioc_1.10.0
[[alternative HTML version deleted]]