Entering edit mode
Hi,
I have a rna-seq data consisting of matched tumor/normal samples from
two patients. For normalization of the counts I am following the
steps in the TCC vignette section "3.3 Normalization of two-group
count data without replicates (paired)". The output from the commands
are as follows:
> data=read.delim("count_bt2_iGenomes_Ensembl.tsv")
> head(data)
A.sorted.bam B.sorted.bam
ENSG00000000003 2400
1130
ENSG00000000005 2
3
ENSG00000000419 1819
575
ENSG00000000457 1317
1262
ENSG00000000460 799
1743
ENSG00000000938 203
41
C.sorted.bam D.sorted.bam
ENSG00000000003 12
72
ENSG00000000005 0
0
ENSG00000000419 938
1608
ENSG00000000457 821
1469
ENSG00000000460 367
800
ENSG00000000938 33303
16355
> group <- c(1,1,2,2)
> pair <- c(1,2,1,2)
> c1 <- data.frame(group=group, pair=pair)
> colnames(data) <- c("T_BRPC13.1118", "T_BRPC_13.764", "N_DU04_PBMC",
"N_DU06_PBMC")
> tcc <- new("TCC", data, c1)
> tcc <- calcNormFactors(tcc, norm.method="tmm", test.method="edger",
iteration=1, FDR=0.1, floorPDEG=0.05, paired=TRUE)
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
Error in .testByEdger.3(design = design, coef = coef, contrast =
contrast) :
TCC::ERROR: Need the design matrix for GLM.
Reading further for steps needed for edgeR without TCC I saw something
related to design and tried it, but got the same error:
> design <- model.matrix(~ group + pair)
> tcc <- new("TCC", data, c1)
> tcc <- calcNormFactors(tcc, norm.method="tmm", test.method="edger",
iteration=1, FDR=0.1, floorPDEG=0.05, paired=TRUE)
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
Error in .testByEdger.3(design = design, coef = coef, contrast =
contrast) :
TCC::ERROR: Need the design matrix for GLM.
I would appreciate help with understanding the cause of the error.
The output from sessionInfo() and package description is as follows:
> sessionInfo()
R version 3.0.3 (2014-03-06)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
>
> packageDescription("TCC")
Package: TCC
Type: Package
Title: TCC: Differential expression analysis for tag count data with
robust normalization strategies
Version: 1.2.0
Author: Jianqiang Sun, Tomoaki Nishiyama, Kentaro Shimizu, and Koji
Kadota
Maintainer: Jianqiang Sun <wukong@bi.a.u-tokyo.ac.jp>, Tomoaki
Nishiyama <tomoakin@staff.kanazawa-u.ac.jp>
Description: This package provides a series of functions for
performing
differential expression analysis from RNA-seq count data using
robust normalization strategy (called DEGES). The basic idea
of
DEGES is that potential differentially expressed genes or
transcripts (DEGs) among compared samples should be removed
before data normalization to obtain a well-ranked gene list
where true DEGs are top-ranked and non-DEGs are bottom ranked.
This can be done by performing a multi-step normalization
strategy (called DEGES for DEG elimination strategy). A major
characteristic of TCC is to provide the robust normalization
methods for several kinds of count data (two-group with or
without replicates, multi-group/multi-factor, and so on) by
virtue of the use of combinations of functions in other
sophisticated packages (especially edgeR, DESeq, and baySeq).
Depends: R (>= 2.15), methods, DESeq, edgeR, baySeq, ROC
Imports: EBSeq, samr
Suggests: RUnit, BiocGenerics
Enhances: snow
biocViews: HighThroughputSequencing, DifferentialExpression, RNAseq
License: GPL-2
Copyright: Authors listed above
Packaged: 2013-10-15 05:31:33 UTC; biocbuild
Built: R 3.0.3; ; 2014-03-31 20:00:49 UTC; unix
-- File:
/general/installs/R/R-3.0.3/lib64/R/library/TCC/Meta/package.rds
Thank you,
- Pankaj
--------------------------------------
Pankaj Agarwal, M.S
Bioinformatician
Bioinformatics Shared Resource
Duke Cancer Institute
Duke University
919-681-6573
p.agarwal@duke.edu<mailto:p.agarwal@duke.edu>
[[alternative HTML version deleted]]