queries re Voom + Limma for RNA-seq data
0
0
Entering edit mode
Guido Hooiveld ★ 4.1k
@guido-hooiveld-2020
Last seen 7 days ago
Wageningen University, Wageningen, the …
Hello Gordon and all, I am analyzing a RNA-seq experiment, and since I have quite some experience analyzing microarray data using linear models, I decided to go for the 'Voom - Limma' workflow. However, I do have some (practical) queries, and would appreciate feedback on these: - when transforming the counts data using voom(), is an addition normalization method recommended? E.g. cyclic loess? (normalize.method="cyclicloess"). Note that before applying Voom I already processed the count data with calcNormFactors(). - when applying the eBayes moderated statistical tests, is it still OK to use "trend=TRUE"? fit2 <- eBayes(fit,trend=TRUE). I am asking because voom() also estimates the mean-variance relationship in the data, and I don't want to 'over-correct'. BTW, in the plotSA() graphs I noticed only a minor effect of trend=TRUE. Thanks, Guido library(limma) samples <- read.delim("samples_descriptions.txt") counts <- read.delim("count_table_geneLevel_1703.txt", row.names=1) isexpr <- rowSums(cpm(counts)>1) >= 3 counts <- counts[isexpr,] #check: > dim(counts) [1] 10658 18; (62.1% of genes are retained) d <- DGEList(counts = counts, group = samples$Condition) d <- calcNormFactors(d) treatment <- as.factor(samples$Condition) design <- model.matrix(~0+diet) v <- voom(d,design,plot=TRUE) # defined contrast matrix, then: fit <- lmFit(v,design) fit1 <- contrasts.fit(fit,cont.matrix) fit2 <- eBayes(fit1,trend=TRUE) plotSA(fit2) topTable(fit2) > sessionInfo() R Under development (unstable) (2013-11-19 r64265) Platform: x86_64-w64-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=English_United States.1252 [2] LC_CTYPE=English_United States.1252 [3] LC_MONETARY=English_United States.1252 [4] LC_NUMERIC=C [5] LC_TIME=English_United States.1252 attached base packages: [1] splines parallel stats graphics grDevices utils datasets [8] methods base other attached packages: [1] edgeR_3.5.28 multtest_2.19.2 Biobase_2.23.6 BiocGenerics_0.9.3 [5] limma_3.19.28 loaded via a namespace (and not attached): [1] MASS_7.3-29 stats4_3.1.0 survival_2.37-4 tools_3.1.0 > --------------------------------------------------------- Guido Hooiveld, PhD Nutrition, Metabolism & Genomics Group Division of Human Nutrition Wageningen University Biotechnion, Bomenweg 2 NL-6703 HD Wageningen the Netherlands tel: (+)31 317 485788 fax: (+)31 317 483342 email: guido.hooiveld@wur.nl internet: http://nutrigene.4t.com http://scholar.google.com/citations?user=qFHaMnoAAAAJ http://www.researcherid.com/rid/F-4912-2010 [[alternative HTML version deleted]]
Microarray Microarray • 1.5k views
ADD COMMENT

Login before adding your answer.

Traffic: 947 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6