Entering edit mode
H@mamba.fhcrc.org
▴
10
@hmambafhcrcorg-6345
Last seen 10.3 years ago
Dear all,
I have a quation about quantile normalization and NA value.
I'm going to normalize the microarray data by "normalizeBetweenArrays"
which is the quantile normalization function in "limma" package.
I normalized a data with NA as follows:
> x <- matrix(c(100,15,200,250,110,16.5,220,275,120,18,240,300),4,3)
> colnames(x) <- paste("Chip",1:3, sep="")
> rownames(x) <- c("RNA-A","RNA-B","RNA-C","RNA-D")
>
> x
Chip1 Chip2 Chip3
RNA-A 100 110.0 120
RNA-B 15 16.5 18
RNA-C 200 220.0 240
RNA-D 250 275.0 300
>
> normalizeBetweenArrays(x)
Chip1 Chip2 Chip3
RNA-A 110.0 110.0 110.0
RNA-B 16.5 16.5 16.5
RNA-C 220.0 220.0 220.0
RNA-D 275.0 275.0 275.0
>
> y <- x
> y[2,2] <- NA
>
> normalizeBetweenArrays(y)
Chip1 Chip2 Chip3
RNA-A 134.44444 47.66667 134.44444
RNA-B 47.66667 NA 47.66667
RNA-C 226.11111 180.27778 226.11111
RNA-D 275.00000 275.00000 275.00000
I asuume the normalized y is a bit far away from normalized y. Does
only one NA induce this large effect ?
Should I normalize after replacing NA with some value, such as
median(x[2,],na.rm=T) ?
My environment is limma Version 3.16.6, R version 3.0.1.
Thanks
-- output of sessionInfo():
Dear all,
I have a quation about quantile normalization and NA value.
I'm going to normalize the microarray data by "normalizeBetweenArrays"
which is the quantile normalization function in "limma" package.
I normalized a data with NA as follows:
> x <- matrix(c(100,15,200,250,110,16.5,220,275,120,18,240,300),4,3)
> colnames(x) <- paste("Chip",1:3, sep="")
> rownames(x) <- c("RNA-A","RNA-B","RNA-C","RNA-D")
>
> x
Chip1 Chip2 Chip3
RNA-A 100 110.0 120
RNA-B 15 16.5 18
RNA-C 200 220.0 240
RNA-D 250 275.0 300
>
> normalizeBetweenArrays(x)
Chip1 Chip2 Chip3
RNA-A 110.0 110.0 110.0
RNA-B 16.5 16.5 16.5
RNA-C 220.0 220.0 220.0
RNA-D 275.0 275.0 275.0
>
> y <- x
> y[2,2] <- NA
>
> normalizeBetweenArrays(y)
Chip1 Chip2 Chip3
RNA-A 134.44444 47.66667 134.44444
RNA-B 47.66667 NA 47.66667
RNA-C 226.11111 180.27778 226.11111
RNA-D 275.00000 275.00000 275.00000
I asuume the normalized y is a bit far away from normalized y. Does
only one NA induce this large effect ?
Should I normalize after replacing NA with some value, such as
median(x[2,],na.rm=T) ?
My environment is limma Version 3.16.6, R version 3.0.1.
Thanks
--
Sent via the guest posting facility at bioconductor.org.