Entering edit mode
Hi there,
I'm dealing with bacterial RNA-seq analysis. My experiment is very
simple.
Two samples to compare and no replicates. Reads were generated with
Ion
Torrent PGM using 316 chip. One for each sample and performed in
different
days.
Since I had too many differentially expressed genes, ¿Should I be more
conservative assigning edgeR dispersion value? Also, there are
considerable
more up-regulated genes in *exvivo* than in plate sample.
See logFC_vs_logCPM figure:
https://docs.google.com/file/d/0B8-ZAuZe8jldY0Y5SWJSdXh1WGc/edit?usp=s
haring
Thanks for you help, Bernardo
- tmap code:
tmap map2 -f HPNK_clean.fsa -r exvivo.fastq -i fastq -s exvivo.sam
--verbose
tmap map2 -f HPNK_clean.fsa -r plate.fastq -i fastq -s plate.sam
--verbose
- Flasgstat:
exvivo:
>3240242 + 0 in total (QC-passed reads + QC-failed reads)
>2132481 + 0 mapped (65.81%:nan%)
plate:
>3774075 + 0 in total (QC-passed reads + QC-failed reads)
>3510438 + 0 mapped (93.01%:nan%)
- count:
python -m HTSeq.scripts.count -m intersection-nonempty -t CDS -i
ID
exvivo.sam HPNK.gff > exvivo.counts
python -m HTSeq.scripts.count -m intersection-nonempty -t CDS -i
ID
plate.sam HPNK.gff > plate.counts
- count stats:
ex-vivo stats
>no_feature 777946
>ambiguous 1
>too_low_aQual 0
>not_aligned 1107761
>alignment_not_unique 0
plate stats
>no_feature 776707
>ambiguous 47
>too_low_aQual 0
>not_aligned 263637
>alignment_not_unique 0
- edgeR code:
library(edgeR)
files <- dir(pattern="*\\.counts$")
RG <- readDGE(files, header=FALSE)
RG
keep <- rowSums(cpm(RG)>1) >= 2 #we keep genes that achieve at least
one
count per million (cpm) in at least three samples
RG <- RG[keep,]
dim(RG)
RG <- calcNormFactors(RG)
RG$samples
plotMDS(RG)
bcv <- 0.2 #Assigned dispersion value of 0.2
m <- as.matrix(RG)
d <- DGEList(counts=m, group=(1:2)) #modify 'group' depending on
sample
number. Also can be adapted to replicated samples, see'?DGEList'.
d
et <- exactTest(d, pair=(1:2),dispersion=bcv^2) #exactTest(RG,
pair=(1:2),dispersion=bcv^2)
et
top <- topTags(et)
top
cpm(RG)[rownames(top), ] #Check the individual cpm values for the top
genes:
summary(de <- decideTestsDGE(et)) #The total number of DE genes at 5%
FDR
is given by'decideTestsDGE'.
[,1]
-1 200
0 1176
1 769
Of the 'number' tags identified as DE, 769 are up-regulated ex-vivo
and 200
are down-regulated.
detags <- rownames(RG)[as.logical(de)] #detags contains the DE genes
at 5%
FDR
plotSmear(et, de.tags=detags) #plot all genes and highlight DE genes
at 5%
FDR
abline(h=c(-1, 1), col="blue") #The blue lines indicate 2-fold
changes.
title("plate vs ex-vivo")
dev.copy2pdf(file = "Figure_1.pdf") #Save as .pdf##
--
*Bernardo Bello Ortí*
PhD student
CReSA-IRTA
Campus de Bellaterra-Universitat Autònoma de Barcelona
Edifici CReSA
08193 Bellaterra (Barcelona, Spain)
Tel.: 647 42 52 63 *www.cresa.es *
*
*
[[alternative HTML version deleted]]