Regarding Illumina's WG-DASL.
0
0
Entering edit mode
abdul rawoof ▴ 60
@abdul-rawoof-5869
Last seen 6.0 years ago
United States
Hello, I am doing Differential Gene Expression analysis for illumina's WG- DASL data using R Bioconductor and GenomeStudio. I am using Quantile normalisation and BH-FDR on both platform for finding DEgenes. But the result is not comparable from both platform. Please find the attached file for R Script and final result from both platform and suggest me for any corrections. Sincerely thanks, Abdul Rawoof, -------------- next part -------------- > BSData <- readBeadSummaryData(dataFile="SampleProbeProfile.txt",sep="\t", skip=0, ProbeID="ProbeID", columns = list(exprs ="AVG_Signal",se.exprs="BEAD_STDERR",nObservations = "Avg_NBEADS", Detection="Detection Pval")) > slotNames(BSData) > pData(BSData) > dim(BSData) > names(assayData(BSData)) > boxplot(as.data.frame(exprs(BSData)),las=2,outline=FALSE,xlab="Sampl es",ylab="Average Signals",main="Boxplot for Non-Normalised Avg_Signals") > boxplot(as.data.frame(log2(exprs(BSData))),las=2,outline=FALSE,xlab= "Samples",ylab="Log2Average Signals",main="Boxplot for Non-Normalised Log2Avg_Signals") > boxplot(as.data.frame(nObservations(BSData)),las=2,outline=FALSE,xla b="Samples",ylab="No of BEADS",main="Boxplot for No.of BEADS per Sample") > clust <- dist(t(exprs(BSData))) > hclust <- hclust(clust,method="complete") > plot(hclust,xlab="SAMPLES",ylab="Heights",main="Cluster Dendogram Before Normalisation") > g <- rownames(exprs(BSData))[1:10] > plotMAXY(log2(exprs(BSData)), arrays =c(1,7), genesToLabel = g,labelCol="red", labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(1,7),labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(6,8,9), genesToLabel = g,labelCol="red", labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(6,8,9),labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(2,4,5), genesToLabel = g,labelCol="red", labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(2,4,5),labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(10,11,12), genesToLabel = g,labelCol="red", labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(10,11,12),labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(2,3,4), genesToLabel = g,labelCol="red", labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(log2(exprs(BSData)), arrays =c(2,3,4),labelpch=20,foldLine=2.46,log=FALSE) ********************************************************************** ***************************************** > BSNorm <- normaliseIllumina(BSData, method="quantile",transform="log2") > write.table(exprs(BSNorm),file="QNormLog2AvgSingal.txt",sep="\t") > boxplot(exprs(BSNorm),las=3,outline=F, col=colors,xlab="Samples", ylab="Log2_Avg_Signals", main="Boxplot For Normalised Log2AVG_SIGNALS",cex.axis=0.9) ********************************************************************** ***************************************** > clust <- dist(t(BSNorm)) > hc <-hclust(clust,method="complete") > plot(hc,xlab="Samples",main="Cluster Dendogram After Normalisation") ********************************************************************** ***************************************** > plotMAXY(BSNorm, arrays =c(1,7), labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(BSNorm, arrays =c(2,4,5), labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(BSNorm, arrays =c(10,11,12), labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(BSNorm, arrays =c(6,8,9), labelpch=20,foldLine=2.46,log=FALSE) > plotMAXY(BSNorm, arrays =c(2,3,4), labelpch=20,foldLine=2.46,log=FALSE) ********************************************************************** ****************************************** > ###Differential Expression Analysis ### > design <- matrix(nrow=12,ncol=5,0) > colnames(design)=c("D1_R","D1_NR","D2_R","D2_NR","Control") > design[which(strtrim(colnames(exprs(BSNorm)),4)=="D1_R",),1]=1 > design[which(strtrim(colnames(exprs(BSNorm)),5)=="D1_NR",),2]=1 > design[which(strtrim(colnames(exprs(BSNorm)),4)=="D2_R",),3]=1 > design[which(strtrim(colnames(exprs(BSNorm)),5)=="D2_NR",),4]=1 > design[which(strtrim(colnames(exprs(BSNorm)),7)=="Control",),5]=1 ********************************************************************** ******************************************* > fit <-lmFit(exprs(BSNorm),design) > cont.matrix <- makeContrasts(D1RvsC= D1_R-Control,D1NRvsC=D1_NR- Control,D2RvsC=D2_R-Control,D2NRvsC=D2_NR-Control,levels=design) > fit1 <- contrasts.fit(fit,cont.matrix) > ebfit <- eBayes(fit1) ********************************************************************** ******************************************* > dTest <- decideTests(ebfit,p.value=0.05,lfc=0) > summary(dTest) D1RvsC D1NRvsC D2RvsC D2NRvsC -1 1 0 3 2 0 29373 29377 29326 29374 1 3 0 48 1 ********************************************************************** ******************************************* >topD1R=toptable(ebfit[,1],coef="D1RvsC",number=Inf,genelist=fit1$gene s,adjust.method="BH",p.value=1,lfc=0) > topD1NR =toptable(ebfit[,2],coef="D1NRvsC",number=Inf,genelist=fit1$ genes,adjust.method="BH",p.value=1,lfc=0) > topD2R =toptable(ebfit[,3],coef="D2RvsC",number=Inf,genelist=fit1$ge nes,adjust.method="BH",p.value=1,lfc=0) > topD2NR =toptable(ebfit[,4],coef="D2NRvsC",number=Inf,genelist=fit1$ genes,adjust.method="BH",p.value=1,lfc=0) ********************************************************************** ******************************************* > vennDiagram(dTest[,1:3], main= " VennDiagram for Differentially Expressed Genes",include=c("up","down"),counts.col=c("red","green")) > vennDiagram(dTest[,c(1,3,4)], main= " VennDiagram for Differentially Expressed Genes",include=c("up","down"),counts.col=c("red","green")) > vennDiagram(dTest[,3:4], main= " VennDiagram for Differentially Expressed Genes",include=c("up","down"),counts.col=c("red","green")) > vennDiagram(dTest[,1:2], main= " VennDiagram for Differentially Expressed Genes",include=c("up","down"),counts.col=c("red","green")) ********************************************************************** ******************************************* > smoothScatter(ebfit[,1]$Amean,ebfit[,1]$coefficients,xlab="Average Intensity",ylab="Log_Ratio",main="SmoothScatter plot for D1R_vs_Control",pch=1.8,cex=.30) > smoothScatter(ebfit[,2]$Amean,ebfit[,2]$coefficients,xlab="Average Intensity",ylab="Log_Ratio",main="SmoothScatter plot for D1NR_vs_Control",pch=1.8,cex=.30) > smoothScatter(ebfit[,3]$Amean,ebfit[,3]$coefficients,xlab="Average Intensity",ylab="Log_Ratio",main="SmoothScatter plot for D2R_vs_Control",pch=1.8,cex=.30) > smoothScatter(ebfit[,4]$Amean,ebfit[,4]$coefficients,xlab="Average Intensity",ylab="Log_Ratio",main="SmoothScatter plot for D2NR_vs_Control",pch=1.8,cex=.30) ********************************************************************** ******************************************* > par(mfrow=c(2,2)) > volcanoplot(ebfit[,1],coef=1,highlight=5,names=fit1$genes$TargetID,x lab="Log_Fold_Change", ylab="Log_Odds",main="VolcanoPlots of DEgenes for D1_R",pch=1,cex=.25) > volcanoplot(ebfit[,2],coef=1,highlight=5,names=fit1$genes$TargetID,x lab="Log_Fold_Change", ylab="Log_Odds",main="VolcanoPlots of DEgenes for D1_NR",pch=1,cex=.25) > volcanoplot(ebfit[,3],coef=1,highlight=5,names=fit1$genes$TargetID,x lab="Log_Fold_Change", ylab="Log_Odds",main="VolcanoPlots of DEgenes for D2_R",pch=1,cex=.25) > volcanoplot(ebfit[,4],coef=1,highlight=5,names=fit1$genes$TargetID,x lab="Log_Fold_Change", ylab="Log_Odds",main="VolcanoPlots of DEgenes for D2_NR",pch=1,cex=.25) ********************************************************************** ******************************************* >library(Heatplus) > rnD1R <- rownames(topD1R)[topD1R$P.Value<0.05] > rnD1R <- as.numeric(rnD1R) > DEgeneD1R <-BSNorm[rnD1R,c(1,7,10,11,12)] > regD1R =regHeatmap(exprs(DEgeneD1R)) > plot(regD1R) ********************************************************************** ******************************************* > rnD1NR <- rownames(topD1NR)[topD1NR$P.Value<0.05] > rnD1NR <- as.numeric(rnD1NR) > DEgeneD1NR <-BSNorm[rnD1NR,c(6,8,9,10,11,12)] > regD1NR=regHeatmap(exprs(DEgeneD1NR) ) > plot(regD1NR) ********************************************************************** ******************************************* > rnD2R <- rownames(topD2R)[topD2R$P.Value<0.05] > rnD2R <- as.numeric(rnD2R) > DEgeneD2R <-BSNorm[rnD2R,c(3,10,11,12)] > regD2R=regHeatmap(exprs(DEgeneD2R) ) > plot(regD2R) ********************************************************************** ******************************************* > rnD2NR <- rownames(topD2NR)[topD2NR$P.Value<0.05] > rnD2NR <- as.numeric(rnD2NR) > DEgeneD2NR <-BSNorm[rnD2NR,c(2,4,5,10,11,12)] > regD2NR=regHeatmap(exprs(DEgeneD2NR)) > plot(regD2NR) #######XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX##############
• 1.1k views
ADD COMMENT

Login before adding your answer.

Traffic: 553 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6