Entering edit mode
Shreyartha Mukherjee
▴
80
@shreyartha-mukherjee-4378
Last seen 10.4 years ago
Hi Fatemehsadat,
I`m no expert in R, there may be a more elegant solution.
Try this, I haven't tested, so minor modifications may be required.
tp <- topTags(lrt, n=15) # Extract the top 15 genes
de_counts<-dge$counts[row.names(tp), order(dge$samples$group)] # Get
raw
counts for top genes
rs<-rowSums(de_counts) # Assuming by high count, across all samples
top.names <- names( rs[ order( rs, decreasing=TRUE ) ] )
de_counts[top.names, ] # DE genes Ranked ,highest first
Thanks,
Shreyartha
On Wed, Dec 12, 2012 at 7:22 AM, Fatemehsadat Seyednasrollah
<fatsey@utu.fi>wrote:
> Hi,
>
> For an RNA-seq data, I have found the significant DE genes based on
FDR <
> 0.05 using the exactTest() function.
> Now I need to rank these DE genes based on the expression level
(count
> values). What is the correct way of doing it?
>
> Thank you in advance.
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor@r-project.org
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives:
> http://news.gmane.org/gmane.science.biology.informatics.conductor
>
[[alternative HTML version deleted]]