Entering edit mode
Paolo Kunderfranco
▴
350
@paolo-kunderfranco-5158
Last seen 7.4 years ago
Dear All,
I am wondering about the construction of a design matrix for identify
diff erentially expressed genes with Lumi package.
I am asking this beacause I obtain strange results when i compare
between groups.
I have 4 sample, each one in triplicate.
I substracted bkg, normalized and vst transformed.
dataMatrix <- exprs(lumi.N.Q)
presentCount <- detectionCall(x.lumi)
selDataMatrix <- dataMatrix[presentCount > 1,]
probeList <- rownames(selDataMatrix)
sampleType <- c('CME','ES','CMA','CMN','CME','ES','CMA','CMN','CME','E
S','CMA','CMN')
design <- model.matrix(~ factor(sampleType))
colnames(design) <- c('CME','ES','CMA','CMN')
fit1 <- lmFit(selDataMatrix, design)
constrast.matrix <- makeContrasts (ES-CMN,ES-CME,ES-CMA,levels=design)
fit1_2 <- contrasts.fit(fit1,constrast.matrix)
fit1_2 <- eBayes(fit1_2)
If now I try to check how the matrix is designed:
design()
CME ES CMA CMN
1 1 1 0 0
2 1 0 0 1
3 1 0 0 0
4 1 0 1 0
5 1 1 0 0
6 1 0 0 1
7 1 0 0 0
8 1 0 1 0
9 1 1 0 0
10 1 0 0 1
11 1 0 0 0
12 1 0 1 0
attr(,"assign")
[1] 0 1 1 1
attr(,"contrasts")
attr(,"contrasts")$`factor(sampleType)`
[1] "contr.treatment"
and this seems not be the one I designed, where am I wrong?
Thanks,
Paolo
ssionInfo()
R version 2.15.0 (2012-03-30)
Platform: i386-pc-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=Italian_Italy.1252 LC_CTYPE=Italian_Italy.1252
LC_MONETARY=Italian_Italy.1252
[4] LC_NUMERIC=C LC_TIME=Italian_Italy.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] annotate_1.34.1 lumiMouseAll.db_1.18.0
org.Mm.eg.db_2.7.1 limma_3.12.1
[5] lumiMouseIDMapping_1.10.0 RSQLite_0.11.1 DBI_0.2-5
AnnotationDbi_1.18.1
[9] lumi_2.8.0 nleqslv_1.9.3
methylumi_2.2.0 ggplot2_0.9.1
[13] reshape2_1.2.1 scales_0.2.1
Biobase_2.16.0 BiocGenerics_0.2.0
loaded via a namespace (and not attached):
[1] affy_1.34.0 affyio_1.24.0 bigmemory_4.2.11
BiocInstaller_1.4.7
[5] Biostrings_2.24.1 bitops_1.0-4.1 BSgenome_1.24.0
colorspace_1.1-1
[9] dichromat_1.2-4 digest_0.5.2 DNAcopy_1.30.0
GenomicRanges_1.8.7
[13] genoset_1.6.0 grid_2.15.0 hdrcde_2.16
IRanges_1.14.4
[17] KernSmooth_2.23-8 labeling_0.1 lattice_0.20-6
MASS_7.3-19
[21] Matrix_1.0-7 memoise_0.1 mgcv_1.7-18
munsell_0.3
[25] nlme_3.1-104 plyr_1.7.1 preprocessCore_1.18.0
proto_0.3-9.2
[29] RColorBrewer_1.0-5 RCurl_1.91-1.1 Rsamtools_1.8.5
rtracklayer_1.16.2
[33] stats4_2.15.0 stringr_0.6 tools_2.15.0
XML_3.9-4.1
[37] xtable_1.7-0 zlibbioc_1.2.0
>