Multiple groups comparison using EdgeR
1
0
Entering edit mode
Xiaohui Wu ▴ 280
@xiaohui-wu-4141
Last seen 10.3 years ago
Hi all, I'm using edgeR for multiple groups comparison. I have two treatments (WT and mutant), each treatment in three tissues (root, leaf, seed), each tissue either has replicates or not. I want to compare the expression between WT and mutant in general (considering all the 3 tissues) and in each tissue seperately. The following is my code to find DE between WT and mutant considering all the 3 tissues: treatment=factor(c(rep('WT',8),rep('MUTANT',8))) tissue=factor( c('root','root','root','leaf','seed','seed','seed','seed', 'root','root','root','leaf','seed','seed','seed','seed')) design <- model.matrix(~treatment+tissue) dge<- DGEList(dat1, group=rep(c("WT","OXT"),each=8)) dge <- estimateGLMCommonDisp(dge, design) dge$common.dispersion glmfit.dge <- glmFit(dge, design,dispersion=dge$common.dispersion) lrt.dge <- glmLRT(dge, glmfit.dge, coef=2) # I want to compare WT and MUTANT, adjusting for tissue root, seed, and leaf, so the coef=2 which is treatmentWT I have some questions: 1) How to interpret the results? I thought the final DE considers DE in root between WT and Mutant, and DE in leaf between WT and Mutant, and leaf, right? So If I want to know the foldChange, should I get seperated FC of root, leaf, and seed? 2) If to compare leaf and seed, then I should use "lrt.dge <- glmLRT(dge, glmfit.dge, coef=4", right? But if I want to compare root and seed, can I mannually change the levels in tissue, like using "levels(tissue)=c('seed','leaf','root')", then do the same comparison? 3) Some experiments in root are paired, like WT_root1 paired with Mutant_root1, need I consider this information? I'm afraid this will make the design matrix too complicate, there will be three factors, and only 1 or 2 samples are paired from the 16 samples. 4) From your experience, is it better to use pooled data to compare WT and Mutant (exactTest), or adjust multiple factors (GLMfit)? Is there any way to evaluate the result? because I don't know which gene is actually DE. 5) What can I do if there are very few DE genes after adjusting pvalue? I have filtered genes by CPM>1 for 8 or 4 samples. There are only 20 genes can be found from the filtered 14,000 genes. (the total gene is ~120,000). --> Output design matrix is like this: (Intercept) treatmentWT tissueroot tissueseed 1 1 1 1 0 2 1 1 1 0 3 1 1 1 0 4 1 1 0 0 5 1 1 0 1 6 1 1 0 1 7 1 1 0 1 8 1 1 0 1 9 1 0 1 0 10 1 0 1 0 11 1 0 1 0 12 1 0 0 0 13 1 0 0 1 14 1 0 0 1 15 1 0 0 1 16 1 0 0 1 > sessionInfo() R version 2.14.0 (2011-10-31) Platform: x86_64-pc-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=Chinese (Simplified)_People's Republic of China.936 [2] LC_CTYPE=Chinese (Simplified)_People's Republic of China.936 [3] LC_MONETARY=Chinese (Simplified)_People's Republic of China.936 [4] LC_NUMERIC=C [5] LC_TIME=Chinese (Simplified)_People's Republic of China.936 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] edgeR_2.4.0 loaded via a namespace (and not attached): [1] limma_3.10.0 I would really appreciate your comments or suggestions. Many thanks! Xiaohui Wu
edgeR edgeR • 3.3k views
ADD COMMENT
0
Entering edit mode
Xiaohui Wu ▴ 280
@xiaohui-wu-4141
Last seen 10.3 years ago
Hi all, I'm using edgeR for multiple groups comparison. I have two treatments (WT and mutant), each treatment in three tissues (root, leaf, seed), each tissue either has replicates or not. I want to compare the expression between WT and mutant in general (considering all the 3 tissues) and in each tissue seperately. The following is my code to find DE between WT and mutant considering all the 3 tissues: treatment=factor(c(rep('WT',8),rep('MUTANT',8))) tissue=factor( c('root','root','root','leaf','seed','seed','seed','seed', 'root','root','root','leaf','seed','seed','seed','seed')) design <- model.matrix(~treatment+tissue) dge<- DGEList(dat1, group=rep(c("WT","OXT"),each=8)) dge <- estimateGLMCommonDisp(dge, design) dge$common.dispersion glmfit.dge <- glmFit(dge, design,dispersion=dge$common.dispersion) lrt.dge <- glmLRT(dge, glmfit.dge, coef=2) # I want to compare WT and MUTANT, adjusting for tissue root, seed, and leaf, so the coef=2 which is treatmentWT I have some questions: 1) How to interpret the results? I thought the final DE considers DE in root between WT and Mutant, and DE in leaf between WT and Mutant, and leaf, right? So If I want to know the foldChange, should I get seperated FC of root, leaf, and seed? 2) If to compare leaf and seed, then I should use "lrt.dge <- glmLRT(dge, glmfit.dge, coef=4", right? But if I want to compare root and seed, can I mannually change the levels in tissue, like using "levels(tissue)=c('seed','leaf','root')", then do the same comparison? 3) Some experiments in root are paired, like WT_root1 paired with Mutant_root1, need I consider this information? I'm afraid this will make the design matrix too complicate, there will be three factors, and only 1 or 2 samples are paired from the 16 samples. 4) From your experience, is it better to use pooled data to compare WT and Mutant (exactTest), or adjust multiple factors (GLMfit)? Is there any way to evaluate the result? because I don't know which gene is actually DE. 5) What can I do if there are very few DE genes after adjusting pvalue? I have filtered genes by CPM>1 for 8 or 4 samples. There are only 20 genes can be found from the filtered 14,000 genes. (the total gene is ~120,000). --> Output design matrix is like this: (Intercept) treatmentWT tissueroot tissueseed 1 1 1 1 0 2 1 1 1 0 3 1 1 1 0 4 1 1 0 0 5 1 1 0 1 6 1 1 0 1 7 1 1 0 1 8 1 1 0 1 9 1 0 1 0 10 1 0 1 0 11 1 0 1 0 12 1 0 0 0 13 1 0 0 1 14 1 0 0 1 15 1 0 0 1 16 1 0 0 1 > sessionInfo() R version 2.14.0 (2011-10-31) Platform: x86_64-pc-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=Chinese (Simplified)_People's Republic of China.936 [2] LC_CTYPE=Chinese (Simplified)_People's Republic of China.936 [3] LC_MONETARY=Chinese (Simplified)_People's Republic of China.936 [4] LC_NUMERIC=C [5] LC_TIME=Chinese (Simplified)_People's Republic of China.936 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] edgeR_2.4.0 loaded via a namespace (and not attached): [1] limma_3.10.0 I would really appreciate your comments or suggestions. Many thanks! Xiaohui Wu
ADD COMMENT

Login before adding your answer.

Traffic: 488 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6