Entering edit mode
josquin.tibbits@dpi.vic.gov.au
▴
60
@josquintibbitsdpivicgovau-4311
Last seen 10.4 years ago
I am running the new EdgeR package 1.8 and have updated R to 1.12.0
and
updated all the packages I have installed.
I have an RNAseq experiment with 24 samples and am wanting to run a
glm
analysis using the Cox-Reid common dispersion (and tagwise)
paramaters. I
have created a DGEList object using a targets file and this
successfully
ran in the calcNormFactors() and in the plotMDS.dge() functions. I
have
also created what appears to be a sensible and ok design matrix using
model.matrix(). These then are being input to estimateCRDisp() to
estimate the common dispersion. The code I have run is as follows (in
red) with output (blue) which is pretty much exactly the same as the
worked example in the manual on pp 51-- and does not seem abnormal at
all......
targets <- read.delim("Lp_NUE_DGEbymSEQ_TARGETS_EdgeRIN.txt",
stringsAsFactors = FALSE, row.names = "label")
targets$Nitrogen <- factor(targets$Nitrogen)
targets$Endophyte <- factor(targets$Endophyte)
targets$Tissue <- factor(targets$Tissue)
targets
## CREATE THE DGEList Object
DGEList.object <- readDGE(targets, skip = 1, comment.char = '#')
colnames(DGEList.object) <- row.names(targets)
## CALCULATE THE NORMALISATION (f) FACTORS
DGEList.object <- calcNormFactors(DGEList.object)
## Exclude data where rowsums are < 30 YOU CAN CHANGE THIS (there
being 24
samples in the experiment)
DGEList.object <- DGEList.object[rowSums(DGEList.object$counts) > 30,
]
DGEList.object
An object of class "DGEList"
$samples
files Endophyte Tissue Nitrogen
lib.size norm.factors
Lp_NUE_LFFULL Lp_NUE_LFFULL_ER_RAWREADS.txt Free Leaf Full
3786614 0.9244799
Lp_NUE_LFNO3 Lp_NUE_LFNO3_ER_RAWREADS.txt Free Leaf Partial
5311856 0.8120410
Lp_NUE_LFK Lp_NUE_LFK_ER_RAWREADS.txt Free Leaf Full
3482772 0.7224960
Lp_NUE_LFPO4 Lp_NUE_LFPO4_ER_RAWREADS.txt Free Leaf Full
6208397 0.7367309
Lp_NUE_LFCa Lp_NUE_LFCa_ER_RAWREADS.txt Free Leaf Full
3597004 0.8147619
19 more rows ...
$counts
Lp_NUE_LFFULL Lp_NUE_LFNO3 Lp_NUE_LFK Lp_NUE_LFPO4
Lp_NUE_LFCa Lp_NUE_LFNH4 Lp_NUE_RFFULL Lp_NUE_RFNO3 Lp_NUE_RFK
Lp_NUE_RFPO4
>prg_cds_44 345 382 120 261
141
215 888 717 698 1112
>prg_cds_141 290 451 126 422
235
459 676 559 474 879
>prg_cds_2 233 277 131 333
239
376 246 185 124 282
>prg_cds_16 433 608 184 614
346
423 924 756 595 913
>prg_cds_84 287 353 90 241
248
394 823 612 989 1061
Lp_NUE_RFCa Lp_NUE_RFNH4 Lp_NUE_LSFULL Lp_NUE_LSNO3
Lp_NUE_LSK Lp_NUE_LSPO4 Lp_NUE_LSCa Lp_NUE_LSNH4 Lp_NUE_RSFULL
Lp_NUE_RSNO3
>prg_cds_44 1107 439 954 257
205
107 868 106 316 1147
>prg_cds_141 583 1052 773 325
230
193 600 264 414 1046
>prg_cds_2 235 454 177 232
177
203 138 239 334 228
>prg_cds_16 817 1040 2373 464
220
276 895 291 714 2655
>prg_cds_84 890 1653 894 268
169
123 714 209 311 1078
Lp_NUE_RSK Lp_NUE_RSPO4 Lp_NUE_RSCa Lp_NUE_RSNH4
>prg_cds_44 622 903 114 474
>prg_cds_141 505 711 205 1166
>prg_cds_2 93 136 157 340
>prg_cds_16 1398 1660 311 1258
>prg_cds_84 893 771 154 1269
63905 more rows ...
## Produce an MDS plot of the data
#plotMDS.dge(DGEList.object, main = "MDS plot for Lp_NUE_DGEbymSEQ")
## DEFINE THE DESIGN MATRIX
design <- model.matrix(~ Endophyte + Tissue + Nitrogen , data =
targets)
print("This is the design matrix")
design
(Intercept) EndophyteSTWT TissueRoot NitrogenPartial
Lp_NUE_LFFULL 1 0 0 0
Lp_NUE_LFNO3 1 0 0 1
Lp_NUE_LFK 1 0 0 0
Lp_NUE_LFPO4 1 0 0 0
Lp_NUE_LFCa 1 0 0 0
Lp_NUE_LFNH4 1 0 0 1
Lp_NUE_RFFULL 1 0 1 0
Lp_NUE_RFNO3 1 0 1 1
Lp_NUE_RFK 1 0 1 0
Lp_NUE_RFPO4 1 0 1 0
Lp_NUE_RFCa 1 0 1 0
Lp_NUE_RFNH4 1 0 1 1
Lp_NUE_LSFULL 1 1 0 0
Lp_NUE_LSNO3 1 1 0 1
Lp_NUE_LSK 1 1 0 0
Lp_NUE_LSPO4 1 1 0 0
Lp_NUE_LSCa 1 1 0 0
Lp_NUE_LSNH4 1 1 0 1
Lp_NUE_RSFULL 1 1 1 0
Lp_NUE_RSNO3 1 1 1 1
Lp_NUE_RSK 1 1 1 0
Lp_NUE_RSPO4 1 1 1 0
Lp_NUE_RSCa 1 1 1 0
Lp_NUE_RSNH4 1 1 1 1
attr(,"assign")
[1] 0 1 2 3
attr(,"contrasts")
attr(,"contrasts")$Endophyte
[1] "contr.treatment"
attr(,"contrasts")$Tissue
[1] "contr.treatment"
attr(,"contrasts")$Nitrogen
[1] "contr.treatment"
## ESTIMATE THE Cox-Reid common dispersion
DGEList.object <- estimateCRDisp(DGEList.object, design)
names(DGEList.object)
This step is giving the following error:::
Loading required package: MASS
Error: NA/NaN/Inf in foreign function call (arg 1)
In addition: Warning messages:
1: glm.fit: algorithm did not converge
2: step size truncated due to divergence
> names(DGEList.object)
[1] "samples" "counts"
Clearly the function is not working. I have tried two different
computers
and a run it in 64 bit but always with the same result. I have also
tried
using a balanced design and a simple design all with the same results.
I
have used the DGEList object to analyse the data using the original
estimateCommonDisp() and exactTest() which worked fine.
I was hoping someone might be able to help resolve this for me????
Thanks in advance....................... Josquin
The sessionInfo() and traceback() are below:
> sessionInfo()
R version 2.12.0 (2010-10-15)
Platform: i386-pc-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] MASS_7.3-8 edgeR_1.8.1
loaded via a namespace (and not attached):
[1] limma_3.6.0
> traceback()
4: .Fortran("dqrls", qr = x[good, ] * w, n = ngoodobs, p = nvars,
y = w * z, ny = 1L, tol = min(1e-07, control$epsilon/1000),
coefficients = double(nvars), residuals = double(ngoodobs),
effects = double(ngoodobs), rank = integer(1L), pivot =
1L:nvars,
qraux = double(nvars), work = double(2 * nvars), PACKAGE =
"base")
3: glm.fit(design, y[i, ], offset = offset[i, ], family = f)
2: adjustedProfileLik(spline.disp[i], y.select, design = design,
offset = offset.mat.select + lib.size.mat.select)
1: estimateCRDisp(DGEList.object, design)
Notice:
This email and any attachments may contain information
t...{{dropped:14}}