Entering edit mode
Hi John In made4, For correspondence analysis (COA, the default option
in made4) the total $eig will be equivalent to the total chi-sq of the
table. data.coa <- ord(eSetdata, type = "coa") To get the % of
variance
explained by each axis. > data.coa$ord$eig * 100/sum(data.coa$ord$eig)
[1] 33.69 23.13 12.65 9.84 6.44 5.83 4.66 3.76 The cumulative variance
is given by > cumsum(data.coa$ord$eig * 100/sum(data.coa$ord$eig)) [1]
33.7 56.8 69.5 79.3 85.7 91.6 96.2 100.0 Therefore almost 57% of the
variance is captured by the first 2 components.
For PCA
data.pca <- ord(eSetdata, type = "pca")
To get the % of variance explained by each axis.
data.pca$ord$eig * 100
The cumulative variance is given by
cumsum(data.coa$ord$eig * 100)
Examples of these and more complete explanation are given on the
website
http://compbio.dfci.harvard.edu/courses/bioconductor/ with the
vignette
url
http://compbio.dfci.harvard.edu/courses/bioconductor/MGED_Oct09.pdf
best regards Aedin Message: 7 Date: Mon, 18 Oct 2010 11:53:40 +0200
From: "Gerhard Thallinger" <gerhard.thallinger@tugraz.at> To: "'John
Antony Gaspar'" <gasparj@uni-koeln.de> Cc:
bioconductor@stat.math.ethz.ch Subject: Re: [BioC] Percentage of
Variance to be included at 3D graph of Principal Component Analysis
(PCA)- made4 package Message-ID:
<a1317a5fae314443af5958a387e95419@agilix> Content-Type: text/plain;
charset="us-ascii" Dear John,
> > Please help me out with this regard. 'prcomp' provides Standard
> > deviation, Proportion of variance and Cumulative Proportion. How
to
> > use them in calculating the percentage of variance at all three
> > PC level.
>
The percentage of variance explained can be calculated as follows:
pca <- prcomp(USArrests, scale = TRUE)
pc1 <- round(pca$sdev[1]2/sum(pca$sdev2)*100,2)
pc2 <- round(pca$sdev[2]2/sum(pca$sdev2)*100,2)
etc ...
Hth
Gerhard
----------------------------------------------------------------------
--
Dr. Gerhard Thallinger E-mail:
Gerhard.Thallinger@tugraz.at
Institute for Genomics and Bioinformatics Web:
http://genome.tugraz.at
Graz University of Technology Tel: +43 316 873
5343
Petersgasse 14/V Fax: +43 316 873
105343
8010 Graz, Austria Map:
http://genome.tugraz.at/Loc.html
--
AedÃn Culhane,
Computational Biology and Functional Genomics
Harvard School of Public Health, Dana-Farber Cancer Institute
44 Binney Street, SM822C
Department of Biostatistics and Computational Biology,
Dana-Farber Cancer Institute
Boston, MA 02115
USA
Phone: +1 (617) 632 2468
Fax: +1 (617) 582 7760
Email: aedin@jimmy.harvard.edu
Web URL: http://www.hsph.harvard.edu/research/aedin-culhane/
[[alternative HTML version deleted]]