Error in getClass(Class, where = topenv(parent.frame())) : "AnnotatedDataFrame" is not a defined class
0
0
Entering edit mode
Sally ▴ 250
@sally-2430
Last seen 10.3 years ago
I wrote a script for LIMMA about 9 months ago, which worked fine. Today ran it again (I've updated to the current R version) But got the following error message after this script: adf<-new("AnnotatedDataFrame",data=phenotypicdata) Error in getClass(Class, where = topenv(parent.frame())) : "AnnotatedDataFrame" is not a defined class The entire script is below. The offending script is in red. #Load libraries source("http://bioconductor.org/biocLite.R") library(limma) library(Biobase) #change directory to folder where files are (c:/limmadegenes) #Change to directory with original data files #read in expression data file and phenotypic data. #Note that row.names=1 means that row names are #in column 1, exprdata<-read.table("exprsData.txt", header=TRUE,sep="\t",row.names=1,as.is=TRUE,fill=TRUE,) class(exprdata) dim(exprdata) colnames(exprdata) head(exprdata) #printout too long to paste phenotypicdata<-read.table("phenotypicdata.txt",row.names=1,header=TRU E,sep="\t") class(phenotypicdata) #returns: [1] "data.frame" dim(phenotypicdata) #returns: [1] 28 2 colnames(phenotypicdata) #returns: [1] "Species" "Time" rownames(phenotypicdata) #Coerse exprdata into a matrix myexprdata<-as.matrix(exprdata) class(myexprdata) #[1] "matrix" rownames(myexprdata) colnames(myexprdata) #Coerse phenotypicdata into a data frame myphenotypicdata<-as.data.frame(phenotypicdata) rownames(myphenotypicdata) colnames(myphenotypicdata) #[1] "species" "time" summary(myphenotypicdata) all(rownames(myphenotypicdata)==colnames(myexprdata)) #[1] TRUE #Create annotated Data Frame adf<-new("AnnotatedDataFrame",data=phenotypicdata) #dim means: dimension of an object. dim(adf) #rowNames columnNames # 28 2 rownames(adf) #NULL #Create eset object eset<-new("ExpressionSet",exprs=myexprdata,phenoData=adf) #Read in targets file targets <- readTargets("targets.txt") targets # Set up character list defining your arrays, include replicates TS <- paste(targets$Species, targets$Time, sep=".") #This script returns the following: TS # Turn TS into a factor variable which facilitates fitting TS <- factor(TS) #This script returns the following design <- model.matrix(~0+TS) #write design object to text file write.table(design,file="design.txt",sep="\t",col.names=NA) colnames(design) <- levels(TS) #for eset put in your M values - see ?lmFit for object types fit <- lmFit(eset, design) #contrast matrix cont.matrix<-makeContrasts(s24vss0=s.24-s.0, s48vss24=s.48-s.24, s96vss48=s.96-s.48, c24vsc0=c.24-c.0, c48vsc24=c.48-c.24, c96vsc48=c.96-c.48, c0vss0=c.0-s.0, c24vss24=c.24-s.24, c48vss48=c.48-s.48, c96vss96=c.96-s.96, levels=design) write.table(cont.matrix,file="cont.matrix.txt",sep="\t",col.names=NA) #estimate the contrasts and put in fit2 fit2 <- contrasts.fit(fit, cont.matrix) fit2 <- eBayes(fit2) s24vss0<-topTable(fit2,coef="s24vss0",number=400,adjust.method="BH",p. value=1) write.table(s24vss0,file="s24vss0.txt",sep="\t") s48vss24<-topTable(fit2,coef="s48vss24",number=400,adjust.method="BH", p.value=1) write.table(s48vss24,file="s48vss24.txt",sep="\t") s96vss48<-topTable(fit2,coef="s96vss48",number=400,adjust.method="BH", p.value=1) write.table(s96vss48,file="s96vss48.txt",sep="\t") c24vsc0<-topTable(fit2,coef="c24vsc0",number=400,adjust.method="BH",p. value=1) write.table(c24vsc0,file="c24vsc0.txt",sep="\t") c48vsc24<-topTable(fit2,coef="c48vsc24",number=400,adjust.method="BH", p.value=1) write.table(c48vsc24,file="c24vsc48.txt",sep="\t") c96vsc48<-topTable(fit2,coef="c96vsc48",number=400,adjust.method="BH", p.value=1) write.table(c96vsc48,file="c96vsc48.txt",sep="\t") c0vss0<-topTable(fit2,coef="c0vss0",number=400,adjust.method="BH",p.va lue=1) write.table(c0vss0,file="c0vss0.txt",sep="\t") c24vss24<-topTable(fit2,coef="c24vss24",number=400,adjust.method="BH", p.value=1) write.table(c24vss24,file="c24vss24.txt",sep="\t") c48vss48<-topTable(fit2,coef="c48vss48",number=400,adjust.method="BH", p.value=1) write.table(c48vss48,file="c48vss48.txt",sep="\t") c96vss96<-topTable(fit2,coef="c96vss96",number=400,adjust.method="BH", p.value=1) write.table(c96vss96,file="c96vss96.txt",sep="\t") Thank-you Sally [[alternative HTML version deleted]]
limma limma • 1.9k views
ADD COMMENT

Login before adding your answer.

Traffic: 995 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6