Entering edit mode
Groeneweg M PATH
▴
10
@groeneweg-m-path-3054
Last seen 10.3 years ago
Dear all,
We are currently analyzing Illumina data using the lumi and affy
packages.
The results we are getting are suspicious: we get adjusted p-values in
the 10^-40 to 10^-98 range.
Obviously, we are doing something wrong. The experiment consists of 20
patients of whom we have positive and negative samples, in other
words, we have paired observations in each patient. We did both a
paired and an unpaired analysis, but this did not matter much. We also
tried SAM analysis using siggenes, but again with the same results. As
a test, we also used the non-normalized data, but this did not change
the results. Has anybody an idea what is going wrong?
We used the following code (abbreviated where appropriate):
library(lumi);
library(limma);
library(Matrix);
library(GOstats);
library(siggenes);
fileName <- 'Group Probe Profile TAB paired.csv';
wouter.lumi <- lumiR(fileName, lib='lumiHumanAll.db');
wouter.lumi;
summary(wouter.lumi, 'QC');
wouter.lumi.N.Q <- lumiExpresso(wouter.lumi, QC.evaluation=TRUE);
summary(wouter.lumi.N.Q);
summary(wouter.lumi.N.Q, 'QC');
## Differential expression over all data sets and gene indentification
## wouter.lumi.N <- lumiN(wouter.lumi.N.Q);
dataMatrix <- exprs(wouter.lumi.N.Q);
presentCount <- detectionCall(wouter.lumi.N.Q);
selDataMatrix <- dataMatrix[presentCount > 0,];
selProbe <- rownames(selDataMatrix);
## Paired Comparission
## specify the groups and conditions
PlaqueType <- c('A', 'B', 'A', 'B', 'A', 'B', ... 'A', 'B', 'A', 'B',
'A') ;
PatientType <- c("p01", "p01", "p02", "p02", "p03", "p03", ... "p21",
"p21", "p22", "p22", "p16", "p18");
## top 10 genes
if(require(limma))
{
factor.PlaqueType <- factor(PlaqueType, levels=c("A","B"));
factor.PatientType <- factor(PatientType);
design <- model.matrix(~ 0+factor.PatientType+factor.PlaqueType);
fit <- lmFit(selDataMatrix, design);
## contrast.matrix <-makeContrasts(A-B, levels=design);
## fit2<-contrasts.fit(fit,contrast.matrix)
fit <-eBayes(fit);
if (require(lumiHumanAll.db) & require(annotate))
{
if (nrow(fit$genes) == 0) fit$genes <-
data.frame(ID=rownames(selDataMatrix))
geneSymbol <- getSYMBOL(fit$genes$ID, 'lumiHumanAll.db')
fit$genes <- data.frame(fit$genes, geneSymbol=geneSymbol)
}
## Print the top 10 genes
print(topTable(fit, number=10))
## get significant gene list with FDR adjusted p values less than 0.01
p.adj <- p.adjust(fit$p.value[,2])
sigGene.adj <- selProbe[ p.adj < 0.01]
## write.table(sigGene.adj, file="significant_genes.csv", sep=";");
## without FDR adjustment
sigGene <- selProbe[ fit$p.value[,2] < 0.01]
}
ID geneSymbol factor.PatientTypep01
factor.PatientTypep02
1820 ZdpxBOa0B_.YqnniiE C22orf33 7.324658
7.314660
7974 oeBgiYqwKqi5.p7lTc MLLT4 7.338124
7.305449
1678 HYFYQOpk4Y6IkqA6Hk C1orf183 7.310553
7.350842
27 Nonl3upr2ojFAogAsU ABCA5 7.301086
7.296429
12509 BkA6hCdSI1BR4pUQio TAS2R3 7.311262
7.324070
11087 oTZyp7gBIx7iV4FdSg RXRG 7.324615
7.318605
2657 oBKSggJ.exxFIq_qe4 CDY1B 7.394242
7.332206
10176 fSIikgsewouigigijo PSMC3IP 7.372082
7.354313
12106 Wqi4jiw9KgiCoIiCLc SPINLW1 7.339931
7.297919
2429 6lWX99edJ1RohUS3dc CCR10 7.393743
7.383870
factor.PatientTypep03 factor.PatientTypep04
factor.PatientTypep05
1820 7.335805 7.307950
7.314493
7974 7.344440 7.327994
7.343561
1678 7.314656 7.342585
7.320585
27 7.275228 7.344058
7.287226
12509 7.328430 7.317047
7.325980
11087 7.362075 7.319144
7.307189
2657 7.392088 7.380562
7.326872
10176 7.418103 7.346580
7.331416
12106 7.355262 7.334333
7.312377
2429 7.402435 7.382996
7.398166
etc...
factor.PlaqueTypeB AveExpr F P.Value adj.P.Val
1820 5.812695e-03 7.334350 79437.93 1.524058e-46 6.165472e-43
7974 9.565944e-03 7.351467 76510.25 2.253042e-46 6.165472e-43
1678 7.535491e-03 7.351725 76065.06 2.394156e-46 6.165472e-43
27 5.886626e-05 7.312479 73115.55 3.613654e-46 6.165472e-43
12509 -2.588097e-05 7.331387 72769.81 3.796430e-46 6.165472e-43
11087 -5.466541e-04 7.341570 71478.61 4.574186e-46 6.165472e-43
2657 6.219771e-03 7.359755 69690.49 5.954555e-46 6.165472e-43
10176 1.360613e-03 7.367441 69121.32 6.485202e-46 6.165472e-43
12106 -3.237106e-03 7.327304 68823.54 6.783319e-46 6.165472e-43
2429 -1.786489e-02 7.380408 68733.39 6.876512e-46 6.165472e-43
Thanks you very much in advance,
Mathijs
[[alternative HTML version deleted]]