allen brain atlas
2
0
Entering edit mode
Radek Blatny ▴ 60
@radek-blatny-2983
Last seen 10.2 years ago
Hi, is there a way to access the expression data from the Allen Brain Atlas and use them for annotation of a topTable? I am particularly interested in being able to download expression profiles for gene symbols (or other suitable identifiers), which is possible to query in semiquantitative graphical format for all brain anatomic regions at the ABA webpage - for instance here: <http: mouse.brain-map.org="" brain="" myst4.html?ispopup="1"> Regards, Radek Radek Blatny, MSc. Institute of Molecular Genetics Department of Mouse Molecular Genetics (C/O Jiri Forejt) Czech Academy of Sciences Videnska 1083 142 20, Prague Czech Republic Tel. (+420) 241 062 260 Fax (+420) 241 062 154 http://www.img.cas.cz/mmg email: blatny at img.cas.cz Skype name: blatny
Genetics Annotation BRAIN Genetics Annotation BRAIN • 2.0k views
ADD COMMENT
0
Entering edit mode
@martin-morgan-1513
Last seen 4 months ago
United States
Hi Radek -- Radek Blatny <blatny at="" img.cas.cz=""> writes: > Hi, is there a way to access the expression data from the Allen Brain > Atlas and use them for annotation of a topTable? I am particularly > interested in being able to download expression profiles for gene > symbols (or other suitable identifiers), which is possible to query > in semiquantitative graphical format for all brain anatomic regions > at the ABA webpage - for instance here: > > <http: mouse.brain-map.org="" brain="" myst4.html?ispopup="1"> Not sure of a package, but it might be easy enough to create something useful yourself. Here's a quite fun first attempt: library(XML) ## some utitlity functions abaUrl <- function(type, id = "") { if (!missing(id)) id <- paste("/",id, ".xml", sep="") paste("http://www.brain-map.org/aba/api/", type, id, sep="") } xq <- function(xml, query) { unlist(xpathApply(xml, query, xmlValue)) } ## retrieve information about a gene; separate some of the info into ## two data frames abaGene <- function(symbol) { url <- abaUrl("gene", symbol) xml <- xmlTreeParse(url, useInternal=TRUE) res <- list(gene_expressions=data.frame( structurename=xq(xml, "//structurename"), avgdensity=as.numeric(xq(xml, "//avgdensity")), avglevel=as.numeric(xq(xml, "//avglevel")), row.names=1), image_series=data.frame( imageseriesdisplayname=xq( xml, "//imageseriesdisplayname"), age=as.integer(xq(xml, "//age")), imageseriesid=as.integer(xq( xml, "//imageseriesid")), sex=factor(xq(xml, "//sex")))) free(xml) res } With this one can > coch <- abaGene("Coch") > coch $gene_expressions avgdensity avglevel Cerebellum 7.888339 11.977408 Cerebral cortex 52.086498 46.967388 Hippocampal region 2.939453 5.846055 Hippocampal formation 4.755450 6.896857 Hypothalamus 8.690369 9.506371 Lateral septal complex 8.783522 7.551568 Midbrain 9.267348 11.813993 Medulla 7.031233 12.667056 Olfactory bulb 26.625715 34.037346 Pons 3.897534 5.504243 Pallidum 8.595852 9.827189 Retrohippocampal region 7.256083 7.999830 Striatum-like amygdalar nuclei 7.874489 9.268417 Striatum 74.447227 79.294968 Striatum dorsal region 100.000000 100.000000 Striatum ventral region 6.137324 4.482482 Thalamus 27.540497 36.667355 $image_series imageseriesdisplayname age imageseriesid sex 1 Coch-Sagittal-06-0609 55 75990683 M 2 Coch-Coronal-05-2779 55 71717614 M For more fun I used the EBImage package and a little more exploration ## Retrieve an image library(EBImage) abaImageSeries <- function(imageseriesid) { url <- abaUrl("imageseries", imageseriesid) xml <- xmlTreeParse(url, useInternal=TRUE) res <- list(images=data.frame( imagedisplayname=xq(xml, "//imagedisplayname"), downloadImagePath=xq(xml, "//downloadImagePath"), stringsAsFactors=FALSE)) free(xml) res } abaImage <- function(downloadImagePath, zoom=1) { url <- paste(abaUrl("image"), "?zoom=", zoom, "&path=", downloadImagePath, sep="") readImage(url) } and then > series <- abaImageSeries(coch$image_series[1,"imageseriesid"]) > series $images imagedisplayname 1 Coch_2 2 Coch_10 3 Coch_18 4 Coch_26 5 Coch_34 6 Coch_42 7 Coch_50 8 Coch_58 9 Coch_74 10 Coch_82 11 Coch_90 12 Coch_98 13 Coch_106 14 Coch_114 15 Coch_122 16 Coch_130 17 Coch_138 18 Coch_146 19 Coch_154 downloadImagePath 1 production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_2 _0203016726_A.aff 2 production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_10 _0203016726_B.aff 3 production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_18 _0203016726_C.aff 4 production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_26 _0203016726_D.aff 5 production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_34 _0203026750_A.aff 6 production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_42 _0203026750_B.aff 7 production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_50 _0203026750_C.aff 8 production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_58 _0203026750_D.aff 9 production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_74 _0203034952_B.aff 10 production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_82 _0203034952_C.aff 11 production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_90 _0203034952_D.aff 12 production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_98 _0203044879_A.aff 13 production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_106 _0203044879_B.aff 14 production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_114 _0203044879_C.aff 15 production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_122 _0203044879_D.aff 16 production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_130 _0203054806_A.aff 17 production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_138 _0203054806_B.aff 18 production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_146 _0203054806_C.aff 19 production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_154 _0203054806_D.aff > img <- abaImage(series$images[1,"downloadImagePath"], 2) > img 'Image' colorMode() : Grayscale storage class : numeric 3D array, writable images in range [0..1] dim() : 513x414 fileName() : /tmp/magick-XXxlP9B8 compression() : JPEG resolution() : dx = 72.0, dy = 72.0 image 1/1: [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 [2,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 [3,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 [4,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 [5,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 ... > display(img) This displays an image at a sort of reasonable resolution; it's then possible to use EBImage to do all kinds of fun manipulations. There's an incredible amount of scope for programmatic manipulation here. The way to construct the queries above, and the structure of the return data, are described on the 'API' page, e.g., following the link to 'API documetation' on this page: http://community.brain-map.org/confluence/display/DataAPI/Home Martin > Regards, Radek > > > Radek Blatny, MSc. > Institute of Molecular Genetics > Department of Mouse Molecular Genetics (C/O Jiri Forejt) > Czech Academy of Sciences > Videnska 1083 > 142 20, Prague > Czech Republic > Tel. (+420) 241 062 260 > Fax (+420) 241 062 154 > http://www.img.cas.cz/mmg > email: blatny at img.cas.cz > Skype name: blatny > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor -- Martin Morgan Computational Biology / Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N. PO Box 19024 Seattle, WA 98109 Location: Arnold Building M2 B169 Phone: (206) 667-2793
ADD COMMENT
0
Entering edit mode
Hi Martin, the code works perfectly, thank you! I've got one more question. Is there a way to do a batch query? When I tried to send a list of symbols to the script, the process stopped with an error if one of the genes was missing in the ABA and there was no data retrieved at all. Any suggestions? Ideally, I would like to send a list of gene symbols, skip the genes, which are not present in the ABA and retrieve a dataframe containing the records consisiting of a gene symbol and expression values for each brain region. Thanks, Radek > Hi Radek -- > > Radek Blatny <blatny at="" img.cas.cz=""> writes: > >> Hi, is there a way to access the expression data from the Allen Brain >> Atlas and use them for annotation of a topTable? I am particularly >> interested in being able to download expression profiles for gene >> symbols (or other suitable identifiers), which is possible to query >> in semiquantitative graphical format for all brain anatomic regions >> at the ABA webpage - for instance here: >> >> <http: mouse.brain-map.org="" brain="" myst4.html?ispopup="1"> > > Not sure of a package, but it might be easy enough to create something > useful yourself. Here's a quite fun first attempt: > > library(XML) > > ## some utitlity functions > > abaUrl <- function(type, id = "") { > if (!missing(id)) > id <- paste("/",id, ".xml", sep="") > paste("http://www.brain-map.org/aba/api/", type, id, sep="") > } > > xq <- function(xml, query) { > unlist(xpathApply(xml, query, xmlValue)) > } > > ## retrieve information about a gene; separate some of the info into > ## two data frames > > abaGene <- function(symbol) { > url <- abaUrl("gene", symbol) > xml <- xmlTreeParse(url, useInternal=TRUE) > res <- list(gene_expressions=data.frame( > structurename=xq(xml, "//structurename"), > avgdensity=as.numeric(xq(xml, "//avgdensity")), > avglevel=as.numeric(xq(xml, "//avglevel")), > row.names=1), > image_series=data.frame( > imageseriesdisplayname=xq( > xml, "//imageseriesdisplayname"), > age=as.integer(xq(xml, "//age")), > imageseriesid=as.integer(xq( > xml, "//imageseriesid")), > sex=factor(xq(xml, "//sex")))) > free(xml) > res > } > > > With this one can > >> coch <- abaGene("Coch") >> coch > $gene_expressions > avgdensity avglevel > Cerebellum 7.888339 11.977408 > Cerebral cortex 52.086498 46.967388 > Hippocampal region 2.939453 5.846055 > Hippocampal formation 4.755450 6.896857 > Hypothalamus 8.690369 9.506371 > Lateral septal complex 8.783522 7.551568 > Midbrain 9.267348 11.813993 > Medulla 7.031233 12.667056 > Olfactory bulb 26.625715 34.037346 > Pons 3.897534 5.504243 > Pallidum 8.595852 9.827189 > Retrohippocampal region 7.256083 7.999830 > Striatum-like amygdalar nuclei 7.874489 9.268417 > Striatum 74.447227 79.294968 > Striatum dorsal region 100.000000 100.000000 > Striatum ventral region 6.137324 4.482482 > Thalamus 27.540497 36.667355 > > $image_series > imageseriesdisplayname age imageseriesid sex > 1 Coch-Sagittal-06-0609 55 75990683 M > 2 Coch-Coronal-05-2779 55 71717614 M > > > For more fun I used the EBImage package and a little more exploration > > ## Retrieve an image > > library(EBImage) > > abaImageSeries <- function(imageseriesid) { > url <- abaUrl("imageseries", imageseriesid) > xml <- xmlTreeParse(url, useInternal=TRUE) > res <- list(images=data.frame( > imagedisplayname=xq(xml, "//imagedisplayname"), > downloadImagePath=xq(xml, "//downloadImagePath"), > stringsAsFactors=FALSE)) > free(xml) > res > } > > abaImage <- function(downloadImagePath, zoom=1) { > url <- paste(abaUrl("image"), > "?zoom=", zoom, > "&path=", downloadImagePath, sep="") > readImage(url) > } > > and then > > >> series <- abaImageSeries(coch$image_series[1,"imageseriesid"]) >> series > $images > imagedisplayname > 1 Coch_2 > 2 Coch_10 > 3 Coch_18 > 4 Coch_26 > 5 Coch_34 > 6 Coch_42 > 7 Coch_50 > 8 Coch_58 > 9 Coch_74 > 10 Coch_82 > 11 Coch_90 > 12 Coch_98 > 13 Coch_106 > 14 Coch_114 > 15 Coch_122 > 16 Coch_130 > 17 Coch_138 > 18 Coch_146 > 19 Coch_154 > downloadImagePath > 1 > production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_2_02 03016726_A.aff > 2 > production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_10_0 203016726_B.aff > 3 > production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_18_0 203016726_C.aff > 4 > production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_26_0 203016726_D.aff > 5 > production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_34_0 203026750_A.aff > 6 > production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_42_0 203026750_B.aff > 7 > production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_50_0 203026750_C.aff > 8 > production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_58_0 203026750_D.aff > 9 > production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_74_0 203034952_B.aff > 10 > production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_82_0 203034952_C.aff > 11 > production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_90_0 203034952_D.aff > 12 > production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_98_0 203044879_A.aff > 13 > production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_106_ 0203044879_B.aff > 14 > production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_114_ 0203044879_C.aff > 15 > production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_122_ 0203044879_D.aff > 16 > production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_130_ 0203054806_A.aff > 17 > production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_138_ 0203054806_B.aff > 18 > production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_146_ 0203054806_C.aff > 19 > production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_154_ 0203054806_D.aff > >> img <- abaImage(series$images[1,"downloadImagePath"], 2) >> img > > 'Image' > colorMode() : Grayscale > storage class : numeric 3D array, writable images in range [0..1] > dim() : 513x414 > fileName() : /tmp/magick-XXxlP9B8 > compression() : JPEG > resolution() : dx = 72.0, dy = 72.0 > > image 1/1: > [,1] [,2] [,3] [,4] [,5] [,6] > [1,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 > [2,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 > [3,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 > [4,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 > [5,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 > ... >> display(img) > > This displays an image at a sort of reasonable resolution; it's then > possible to use EBImage to do all kinds of fun manipulations. There's > an incredible amount of scope for programmatic manipulation here. > > The way to construct the queries above, and the structure of the > return data, are described on the 'API' page, e.g., following the link > to 'API documetation' on this page: > > http://community.brain-map.org/confluence/display/DataAPI/Home > > Martin > >> Regards, Radek >> >> >> Radek Blatny, MSc. >> Institute of Molecular Genetics >> Department of Mouse Molecular Genetics (C/O Jiri Forejt) >> Czech Academy of Sciences >> Videnska 1083 >> 142 20, Prague >> Czech Republic >> Tel. (+420) 241 062 260 >> Fax (+420) 241 062 154 >> http://www.img.cas.cz/mmg >> email: blatny at img.cas.cz >> Skype name: blatny >> >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor at stat.math.ethz.ch >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: >> http://news.gmane.org/gmane.science.biology.informatics.conductor > > -- > Martin Morgan > Computational Biology / Fred Hutchinson Cancer Research Center > 1100 Fairview Ave. N. > PO Box 19024 Seattle, WA 98109 > > Location: Arnold Building M2 B169 > Phone: (206) 667-2793 >
ADD REPLY
0
Entering edit mode
@martin-morgan-1513
Last seen 4 months ago
United States
Hi Radek -- "Radek Blatny" <radek.blatny at="" img.cas.cz=""> writes: > Hi Martin, > > the code works perfectly, thank you! I've got one more question. Is there > a way to do a batch query? > > When I tried to send a list of symbols to the script, the process stopped > with an error if one of the genes was missing in the ABA and there was no > data retrieved at all. Any suggestions? It seems like the ABA lets you query individual terms, or to do a search, but not to do a batch-style query. A solution might be abaBatchGenes <- function(symbols) { res <- lapply(symbols, function(symbol) { tryCatch(abaGene(symbol), error=function(err) { list(gene_expressions=data.frame( avgdensity=numeric(), avglevel=numeric()), image_series=data.frame( imageseriesdisplayname=character(), age=integer(), imageseriesid=integer(), sex=factor(levels=c("F", "M")))) }) }) names(res) <- symbols res } and then > abaBatchGenes(c("Coch", "Foo")) > Ideally, I would like to send a list of gene symbols, skip the genes, > which are not present in the ABA and retrieve a dataframe containing the > records consisiting of a gene symbol and expression values for each brain > region. Backing up, and with your specific objective in mind, one might abaGene1 <- function(symbol) { url <- abaUrl("gene", symbol) xml <- xmlTreeParse(url, useInternal=TRUE) data.frame(symbol=symbol, structurename=xq(xml, "//structurename"), avgdensity=as.numeric(xq(xml, "//avgdensity")), avglevel=as.numeric(xq(xml, "//avglevel")), row.names=seq_len(xq(xml, "count(//structurename)"))) } abaBatchGene1 <- function(symbols) { res <- lapply(symbols, function(symbol) { tryCatch(abaGene1(symbol), error=function(err) FALSE) }) do.call("rbind", Filter(is.data.frame, res)) } and then > abaBatchGene1(c("Coch", "Foo", "Calb1")) failed to load HTTP resource symbol structurename avgdensity avglevel 1 Coch Cerebellum 7.888339 11.977408 2 Coch Cerebral cortex 52.086498 46.967388 [SNIP] 16 Coch Striatum ventral region 6.137324 4.482482 17 Coch Thalamus 27.540497 36.667355 18 Calb1 Cerebellum 67.864638 95.345704 19 Calb1 Cerebral cortex 76.402445 89.302411 [SNIP] 33 Calb1 Striatum ventral region 88.071941 87.418639 34 Calb1 Thalamus 79.896777 87.737941 Martin > Thanks, Radek > >> Hi Radek -- >> >> Radek Blatny <blatny at="" img.cas.cz=""> writes: >> >>> Hi, is there a way to access the expression data from the Allen Brain >>> Atlas and use them for annotation of a topTable? I am particularly >>> interested in being able to download expression profiles for gene >>> symbols (or other suitable identifiers), which is possible to query >>> in semiquantitative graphical format for all brain anatomic regions >>> at the ABA webpage - for instance here: >>> >>> <http: mouse.brain-map.org="" brain="" myst4.html?ispopup="1"> >> >> Not sure of a package, but it might be easy enough to create something >> useful yourself. Here's a quite fun first attempt: >> >> library(XML) >> >> ## some utitlity functions >> >> abaUrl <- function(type, id = "") { >> if (!missing(id)) >> id <- paste("/",id, ".xml", sep="") >> paste("http://www.brain-map.org/aba/api/", type, id, sep="") >> } >> >> xq <- function(xml, query) { >> unlist(xpathApply(xml, query, xmlValue)) >> } >> >> ## retrieve information about a gene; separate some of the info into >> ## two data frames >> >> abaGene <- function(symbol) { >> url <- abaUrl("gene", symbol) >> xml <- xmlTreeParse(url, useInternal=TRUE) >> res <- list(gene_expressions=data.frame( >> structurename=xq(xml, "//structurename"), >> avgdensity=as.numeric(xq(xml, "//avgdensity")), >> avglevel=as.numeric(xq(xml, "//avglevel")), >> row.names=1), >> image_series=data.frame( >> imageseriesdisplayname=xq( >> xml, "//imageseriesdisplayname"), >> age=as.integer(xq(xml, "//age")), >> imageseriesid=as.integer(xq( >> xml, "//imageseriesid")), >> sex=factor(xq(xml, "//sex")))) >> free(xml) >> res >> } >> >> >> With this one can >> >>> coch <- abaGene("Coch") >>> coch >> $gene_expressions >> avgdensity avglevel >> Cerebellum 7.888339 11.977408 >> Cerebral cortex 52.086498 46.967388 >> Hippocampal region 2.939453 5.846055 >> Hippocampal formation 4.755450 6.896857 >> Hypothalamus 8.690369 9.506371 >> Lateral septal complex 8.783522 7.551568 >> Midbrain 9.267348 11.813993 >> Medulla 7.031233 12.667056 >> Olfactory bulb 26.625715 34.037346 >> Pons 3.897534 5.504243 >> Pallidum 8.595852 9.827189 >> Retrohippocampal region 7.256083 7.999830 >> Striatum-like amygdalar nuclei 7.874489 9.268417 >> Striatum 74.447227 79.294968 >> Striatum dorsal region 100.000000 100.000000 >> Striatum ventral region 6.137324 4.482482 >> Thalamus 27.540497 36.667355 >> >> $image_series >> imageseriesdisplayname age imageseriesid sex >> 1 Coch-Sagittal-06-0609 55 75990683 M >> 2 Coch-Coronal-05-2779 55 71717614 M >> >> >> For more fun I used the EBImage package and a little more exploration >> >> ## Retrieve an image >> >> library(EBImage) >> >> abaImageSeries <- function(imageseriesid) { >> url <- abaUrl("imageseries", imageseriesid) >> xml <- xmlTreeParse(url, useInternal=TRUE) >> res <- list(images=data.frame( >> imagedisplayname=xq(xml, "//imagedisplayname"), >> downloadImagePath=xq(xml, "//downloadImagePath"), >> stringsAsFactors=FALSE)) >> free(xml) >> res >> } >> >> abaImage <- function(downloadImagePath, zoom=1) { >> url <- paste(abaUrl("image"), >> "?zoom=", zoom, >> "&path=", downloadImagePath, sep="") >> readImage(url) >> } >> >> and then >> >> >>> series <- abaImageSeries(coch$image_series[1,"imageseriesid"]) >>> series >> $images >> imagedisplayname >> 1 Coch_2 >> 2 Coch_10 >> 3 Coch_18 >> 4 Coch_26 >> 5 Coch_34 >> 6 Coch_42 >> 7 Coch_50 >> 8 Coch_58 >> 9 Coch_74 >> 10 Coch_82 >> 11 Coch_90 >> 12 Coch_98 >> 13 Coch_106 >> 14 Coch_114 >> 15 Coch_122 >> 16 Coch_130 >> 17 Coch_138 >> 18 Coch_146 >> 19 Coch_154 >> downloadImagePath >> 1 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_2_0 203016726_A.aff >> 2 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_10_ 0203016726_B.aff >> 3 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_18_ 0203016726_C.aff >> 4 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/Coch_26_ 0203016726_D.aff >> 5 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_34_ 0203026750_A.aff >> 6 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_42_ 0203026750_B.aff >> 7 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_50_ 0203026750_C.aff >> 8 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/Coch_58_ 0203026750_D.aff >> 9 >> production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_74_ 0203034952_B.aff >> 10 >> production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_82_ 0203034952_C.aff >> 11 >> production18/Coch_06-0609_38068/zoomify/primary/0203034952/Coch_90_ 0203034952_D.aff >> 12 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_98_ 0203044879_A.aff >> 13 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_106 _0203044879_B.aff >> 14 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_114 _0203044879_C.aff >> 15 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/Coch_122 _0203044879_D.aff >> 16 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_130 _0203054806_A.aff >> 17 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_138 _0203054806_B.aff >> 18 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_146 _0203054806_C.aff >> 19 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/Coch_154 _0203054806_D.aff >> >>> img <- abaImage(series$images[1,"downloadImagePath"], 2) >>> img >> >> 'Image' >> colorMode() : Grayscale >> storage class : numeric 3D array, writable images in range [0..1] >> dim() : 513x414 >> fileName() : /tmp/magick-XXxlP9B8 >> compression() : JPEG >> resolution() : dx = 72.0, dy = 72.0 >> >> image 1/1: >> [,1] [,2] [,3] [,4] [,5] [,6] >> [1,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [2,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [3,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [4,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [5,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> ... >>> display(img) >> >> This displays an image at a sort of reasonable resolution; it's then >> possible to use EBImage to do all kinds of fun manipulations. There's >> an incredible amount of scope for programmatic manipulation here. >> >> The way to construct the queries above, and the structure of the >> return data, are described on the 'API' page, e.g., following the link >> to 'API documetation' on this page: >> >> http://community.brain-map.org/confluence/display/DataAPI/Home >> >> Martin >> >>> Regards, Radek >>> >>> >>> Radek Blatny, MSc. >>> Institute of Molecular Genetics >>> Department of Mouse Molecular Genetics (C/O Jiri Forejt) >>> Czech Academy of Sciences >>> Videnska 1083 >>> 142 20, Prague >>> Czech Republic >>> Tel. (+420) 241 062 260 >>> Fax (+420) 241 062 154 >>> http://www.img.cas.cz/mmg >>> email: blatny at img.cas.cz >>> Skype name: blatny >>> >>> _______________________________________________ >>> Bioconductor mailing list >>> Bioconductor at stat.math.ethz.ch >>> https://stat.ethz.ch/mailman/listinfo/bioconductor >>> Search the archives: >>> http://news.gmane.org/gmane.science.biology.informatics.conductor >> >> -- >> Martin Morgan >> Computational Biology / Fred Hutchinson Cancer Research Center >> 1100 Fairview Ave. N. >> PO Box 19024 Seattle, WA 98109 >> >> Location: Arnold Building M2 B169 >> Phone: (206) 667-2793 >> > -- Martin Morgan Computational Biology / Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N. PO Box 19024 Seattle, WA 98109 Location: Arnold Building M2 B169 Phone: (206) 667-2793
ADD COMMENT
0
Entering edit mode
Hi Martin, thank you very much for the additional code. Not having a batch query is strange since the web interface has a possibility to query multiple genes at once (separated by coma) so I would expect to have this possibility in the API as well. Another solution might be to download the whole expression data in an xml file and parse it into an R table-type object. However I wasn't able to find the whole db in an xml file. Regards, Radek On Aug 25, 2008, at 3:47 PM, Martin Morgan wrote: Hi Radek -- "Radek Blatny" <radek.blatny at="" img.cas.cz=""> writes: > Hi Martin, > > the code works perfectly, thank you! I've got one more question. Is > there > a way to do a batch query? > > When I tried to send a list of symbols to the script, the process > stopped > with an error if one of the genes was missing in the ABA and there > was no > data retrieved at all. Any suggestions? It seems like the ABA lets you query individual terms, or to do a search, but not to do a batch-style query. A solution might be abaBatchGenes <- function(symbols) { res <- lapply(symbols, function(symbol) { tryCatch(abaGene(symbol), error=function(err) { list(gene_expressions=data.frame( avgdensity=numeric(), avglevel=numeric()), image_series=data.frame( imageseriesdisplayname=character(), age=integer(), imageseriesid=integer(), sex=factor(levels=c("F", "M")))) }) }) names(res) <- symbols res } and then > abaBatchGenes(c("Coch", "Foo")) > Ideally, I would like to send a list of gene symbols, skip the genes, > which are not present in the ABA and retrieve a dataframe > containing the > records consisiting of a gene symbol and expression values for each > brain > region. Backing up, and with your specific objective in mind, one might abaGene1 <- function(symbol) { url <- abaUrl("gene", symbol) xml <- xmlTreeParse(url, useInternal=TRUE) data.frame(symbol=symbol, structurename=xq(xml, "//structurename"), avgdensity=as.numeric(xq(xml, "//avgdensity")), avglevel=as.numeric(xq(xml, "//avglevel")), row.names=seq_len(xq(xml, "count(//structurename)"))) } abaBatchGene1 <- function(symbols) { res <- lapply(symbols, function(symbol) { tryCatch(abaGene1(symbol), error=function(err) FALSE) }) do.call("rbind", Filter(is.data.frame, res)) } and then > abaBatchGene1(c("Coch", "Foo", "Calb1")) failed to load HTTP resource symbol structurename avgdensity avglevel 1 Coch Cerebellum 7.888339 11.977408 2 Coch Cerebral cortex 52.086498 46.967388 [SNIP] 16 Coch Striatum ventral region 6.137324 4.482482 17 Coch Thalamus 27.540497 36.667355 18 Calb1 Cerebellum 67.864638 95.345704 19 Calb1 Cerebral cortex 76.402445 89.302411 [SNIP] 33 Calb1 Striatum ventral region 88.071941 87.418639 34 Calb1 Thalamus 79.896777 87.737941 Martin > Thanks, Radek > >> Hi Radek -- >> >> Radek Blatny <blatny at="" img.cas.cz=""> writes: >> >>> Hi, is there a way to access the expression data from the Allen >>> Brain >>> Atlas and use them for annotation of a topTable? I am particularly >>> interested in being able to download expression profiles for gene >>> symbols (or other suitable identifiers), which is possible to query >>> in semiquantitative graphical format for all brain anatomic regions >>> at the ABA webpage - for instance here: >>> >>> <http: mouse.brain-map.org="" brain="" myst4.html?ispopup="1"> >> >> Not sure of a package, but it might be easy enough to create >> something >> useful yourself. Here's a quite fun first attempt: >> >> library(XML) >> >> ## some utitlity functions >> >> abaUrl <- function(type, id = "") { >> if (!missing(id)) >> id <- paste("/",id, ".xml", sep="") >> paste("http://www.brain-map.org/aba/api/", type, id, sep="") >> } >> >> xq <- function(xml, query) { >> unlist(xpathApply(xml, query, xmlValue)) >> } >> >> ## retrieve information about a gene; separate some of the info into >> ## two data frames >> >> abaGene <- function(symbol) { >> url <- abaUrl("gene", symbol) >> xml <- xmlTreeParse(url, useInternal=TRUE) >> res <- list(gene_expressions=data.frame( >> structurename=xq(xml, "//structurename"), >> avgdensity=as.numeric(xq(xml, "//avgdensity")), >> avglevel=as.numeric(xq(xml, "//avglevel")), >> row.names=1), >> image_series=data.frame( >> imageseriesdisplayname=xq( >> xml, "//imageseriesdisplayname"), >> age=as.integer(xq(xml, "//age")), >> imageseriesid=as.integer(xq( >> xml, "//imageseriesid")), >> sex=factor(xq(xml, "//sex")))) >> free(xml) >> res >> } >> >> >> With this one can >> >>> coch <- abaGene("Coch") >>> coch >> $gene_expressions >> avgdensity avglevel >> Cerebellum 7.888339 11.977408 >> Cerebral cortex 52.086498 46.967388 >> Hippocampal region 2.939453 5.846055 >> Hippocampal formation 4.755450 6.896857 >> Hypothalamus 8.690369 9.506371 >> Lateral septal complex 8.783522 7.551568 >> Midbrain 9.267348 11.813993 >> Medulla 7.031233 12.667056 >> Olfactory bulb 26.625715 34.037346 >> Pons 3.897534 5.504243 >> Pallidum 8.595852 9.827189 >> Retrohippocampal region 7.256083 7.999830 >> Striatum-like amygdalar nuclei 7.874489 9.268417 >> Striatum 74.447227 79.294968 >> Striatum dorsal region 100.000000 100.000000 >> Striatum ventral region 6.137324 4.482482 >> Thalamus 27.540497 36.667355 >> >> $image_series >> imageseriesdisplayname age imageseriesid sex >> 1 Coch-Sagittal-06-0609 55 75990683 M >> 2 Coch-Coronal-05-2779 55 71717614 M >> >> >> For more fun I used the EBImage package and a little more exploration >> >> ## Retrieve an image >> >> library(EBImage) >> >> abaImageSeries <- function(imageseriesid) { >> url <- abaUrl("imageseries", imageseriesid) >> xml <- xmlTreeParse(url, useInternal=TRUE) >> res <- list(images=data.frame( >> imagedisplayname=xq(xml, "//imagedisplayname"), >> downloadImagePath=xq(xml, "//downloadImagePath"), >> stringsAsFactors=FALSE)) >> free(xml) >> res >> } >> >> abaImage <- function(downloadImagePath, zoom=1) { >> url <- paste(abaUrl("image"), >> "?zoom=", zoom, >> "&path=", downloadImagePath, sep="") >> readImage(url) >> } >> >> and then >> >> >>> series <- abaImageSeries(coch$image_series[1,"imageseriesid"]) >>> series >> $images >> imagedisplayname >> 1 Coch_2 >> 2 Coch_10 >> 3 Coch_18 >> 4 Coch_26 >> 5 Coch_34 >> 6 Coch_42 >> 7 Coch_50 >> 8 Coch_58 >> 9 Coch_74 >> 10 Coch_82 >> 11 Coch_90 >> 12 Coch_98 >> 13 Coch_106 >> 14 Coch_114 >> 15 Coch_122 >> 16 Coch_130 >> 17 Coch_138 >> 18 Coch_146 >> 19 Coch_154 >> >> downloadImagePath >> 1 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/ >> Coch_2_0203016726_A.aff >> 2 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/ >> Coch_10_0203016726_B.aff >> 3 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/ >> Coch_18_0203016726_C.aff >> 4 >> production18/Coch_06-0609_38068/zoomify/primary/0203016726/ >> Coch_26_0203016726_D.aff >> 5 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/ >> Coch_34_0203026750_A.aff >> 6 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/ >> Coch_42_0203026750_B.aff >> 7 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/ >> Coch_50_0203026750_C.aff >> 8 >> production18/Coch_06-0609_38068/zoomify/primary/0203026750/ >> Coch_58_0203026750_D.aff >> 9 >> production18/Coch_06-0609_38068/zoomify/primary/0203034952/ >> Coch_74_0203034952_B.aff >> 10 >> production18/Coch_06-0609_38068/zoomify/primary/0203034952/ >> Coch_82_0203034952_C.aff >> 11 >> production18/Coch_06-0609_38068/zoomify/primary/0203034952/ >> Coch_90_0203034952_D.aff >> 12 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/ >> Coch_98_0203044879_A.aff >> 13 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/ >> Coch_106_0203044879_B.aff >> 14 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/ >> Coch_114_0203044879_C.aff >> 15 >> production18/Coch_06-0609_38068/zoomify/primary/0203044879/ >> Coch_122_0203044879_D.aff >> 16 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/ >> Coch_130_0203054806_A.aff >> 17 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/ >> Coch_138_0203054806_B.aff >> 18 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/ >> Coch_146_0203054806_C.aff >> 19 >> production18/Coch_06-0609_38068/zoomify/primary/0203054806/ >> Coch_154_0203054806_D.aff >> >>> img <- abaImage(series$images[1,"downloadImagePath"], 2) >>> img >> >> 'Image' >> colorMode() : Grayscale >> storage class : numeric 3D array, writable images in range [0..1] >> dim() : 513x414 >> fileName() : /tmp/magick-XXxlP9B8 >> compression() : JPEG >> resolution() : dx = 72.0, dy = 72.0 >> >> image 1/1: >> [,1] [,2] [,3] [,4] [,5] [,6] >> [1,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [2,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [3,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [4,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> [5,] 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 0.9803922 >> ... >>> display(img) >> >> This displays an image at a sort of reasonable resolution; it's then >> possible to use EBImage to do all kinds of fun manipulations. There's >> an incredible amount of scope for programmatic manipulation here. >> >> The way to construct the queries above, and the structure of the >> return data, are described on the 'API' page, e.g., following the >> link >> to 'API documetation' on this page: >> >> http://community.brain-map.org/confluence/display/DataAPI/Home >> >> Martin >> >>> Regards, Radek >>> >>> >>> Radek Blatny, MSc. >>> Institute of Molecular Genetics >>> Department of Mouse Molecular Genetics (C/O Jiri Forejt) >>> Czech Academy of Sciences >>> Videnska 1083 >>> 142 20, Prague >>> Czech Republic >>> Tel. (+420) 241 062 260 >>> Fax (+420) 241 062 154 >>> http://www.img.cas.cz/mmg >>> email: blatny at img.cas.cz >>> Skype name: blatny >>> >>> _______________________________________________ >>> Bioconductor mailing list >>> Bioconductor at stat.math.ethz.ch >>> https://stat.ethz.ch/mailman/listinfo/bioconductor >>> Search the archives: >>> http://news.gmane.org/gmane.science.biology.informatics.conductor >> >> -- >> Martin Morgan >> Computational Biology / Fred Hutchinson Cancer Research Center >> 1100 Fairview Ave. N. >> PO Box 19024 Seattle, WA 98109 >> >> Location: Arnold Building M2 B169 >> Phone: (206) 667-2793 >> > -- Martin Morgan Computational Biology / Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N. PO Box 19024 Seattle, WA 98109 Location: Arnold Building M2 B169 Phone: (206) 667-2793
ADD REPLY

Login before adding your answer.

Traffic: 894 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6