Entering edit mode
Roberts, Raymond
▴
30
@roberts-raymond-2877
Last seen 10.2 years ago
Dear List,
I'm using genefilter and Limma to analyze the human exon array. I did
my preprocessing with aroma.affymetrix and then loaded it into limma
and
used genefilter to isolate the significant genes. At least that is
what
I think I am doing. Here is my script starting at the function I have
the question about
##Filter for differentialy expressed genes
f1<-kOverA(2,7)
ffun<-filterfun(f1)
which<-genefilter(exprs(RMASet), ffun)
rma_no<-summary(which)
rmafiltset<-RMASet[which,]
grps <- paste(pData(rmafiltset)$hours)
lev <- c("time0", "time3", "time6", "time12", "time24", "time48")
f <- factor(grps, levels = lev)
design <- model.matrix(~ 0 + f)
colnames(design) <- lev
rmafit <- lmFit(rmafiltset, design)
contrast.matrix <- makeContrasts("time3-time0", "time6-time3",
"time12-time6", "time24-time12", "time48-time24", "time6-time0",
"time12-time0", "time24-time0", "time48-time0", levels=design)
rmafit2 <- contrasts.fit(rmafit, contrast.matrix)
rmafit3 <- eBayes(rmafit2)
pval<-0.05
l2foldch<- 0.58496250072
rmaresults<-decideTests(rmafit3, p.value=pval, lfc=l2foldch)
rmalist1 <- rmaresults[,1]!=0
rmalist2 <- rmaresults[,2]!=0
rmalist3 <- rmaresults[,3]!=0
rmalist4 <- rmaresults[,4]!=0
rmalist5 <- rmaresults[,5]!=0
rmalist6 <- rmaresults[,6]!=0
rmalist7 <- rmaresults[,7]!=0
rmalist8 <- rmaresults[,8]!=0
rmalist9 <- rmaresults[,9]!=0
rmagroup1 <- rmafiltset[rmalist1,]
rmagroup2 <- rmafiltset[rmalist2,]
rmagroup3 <- rmafiltset[rmalist3,]
rmagroup4 <- rmafiltset[rmalist4,]
rmagroup5 <- rmafiltset[rmalist5,]
rmagroup6 <- rmafiltset[rmalist6,]
rmagroup7 <- rmafiltset[rmalist7,]
rmagroup8 <- rmafiltset[rmalist8,]
rmagroup9 <- rmafiltset[rmalist9,]
rmaglist1 <- featureNames(rmagroup1)
rmaglist2 <- featureNames(rmagroup2)
rmaglist3 <- featureNames(rmagroup3)
rmaglist4 <- featureNames(rmagroup4)
rmaglist5 <- featureNames(rmagroup5)
rmaglist6 <- featureNames(rmagroup6)
rmaglist7 <- featureNames(rmagroup7)
rmaglist8 <- featureNames(rmagroup8)
rmaglist9 <- featureNames(rmagroup9)
rmaunion <- union(rmaglist1, union(rmaglist2, union(rmaglist3,
union(rmaglist4, union(rmaglist5, union(rmaglist6, union(rmaglist7,
union(rmaglist8, rmaglist9))))))))
rmaunionset <- rmafiltset[rmaunion,]
plotdata2 <- exprs(rmaunionset)
colnames(plotdata2) <- paste(pData(RMASet)$label)
I go on to create a heatmap and html output of significant genes. My
problem is that when I change kOverA(2, 7) to, say, kOverA(2, 6), I
get
fewer genes, I thought this should increase the number of genes I'm
seeing in the final output. If I increase from 7 to 8 I still get a
shorter list. It seems like 7 is the value that generates the maximum
output. If anyone could explain why this is happening I would really
appreciate it. If I should post more information please just let me
know.
Ray Roberts
Lovelace Respiratory Research Institute
[[alternative HTML version deleted]]