kOverA(k, A=100, na.rm=TRUE)
1
0
Entering edit mode
@roberts-raymond-2877
Last seen 10.2 years ago
Dear List, I'm using genefilter and Limma to analyze the human exon array. I did my preprocessing with aroma.affymetrix and then loaded it into limma and used genefilter to isolate the significant genes. At least that is what I think I am doing. Here is my script starting at the function I have the question about ##Filter for differentialy expressed genes f1<-kOverA(2,7) ffun<-filterfun(f1) which<-genefilter(exprs(RMASet), ffun) rma_no<-summary(which) rmafiltset<-RMASet[which,] grps <- paste(pData(rmafiltset)$hours) lev <- c("time0", "time3", "time6", "time12", "time24", "time48") f <- factor(grps, levels = lev) design <- model.matrix(~ 0 + f) colnames(design) <- lev rmafit <- lmFit(rmafiltset, design) contrast.matrix <- makeContrasts("time3-time0", "time6-time3", "time12-time6", "time24-time12", "time48-time24", "time6-time0", "time12-time0", "time24-time0", "time48-time0", levels=design) rmafit2 <- contrasts.fit(rmafit, contrast.matrix) rmafit3 <- eBayes(rmafit2) pval<-0.05 l2foldch<- 0.58496250072 rmaresults<-decideTests(rmafit3, p.value=pval, lfc=l2foldch) rmalist1 <- rmaresults[,1]!=0 rmalist2 <- rmaresults[,2]!=0 rmalist3 <- rmaresults[,3]!=0 rmalist4 <- rmaresults[,4]!=0 rmalist5 <- rmaresults[,5]!=0 rmalist6 <- rmaresults[,6]!=0 rmalist7 <- rmaresults[,7]!=0 rmalist8 <- rmaresults[,8]!=0 rmalist9 <- rmaresults[,9]!=0 rmagroup1 <- rmafiltset[rmalist1,] rmagroup2 <- rmafiltset[rmalist2,] rmagroup3 <- rmafiltset[rmalist3,] rmagroup4 <- rmafiltset[rmalist4,] rmagroup5 <- rmafiltset[rmalist5,] rmagroup6 <- rmafiltset[rmalist6,] rmagroup7 <- rmafiltset[rmalist7,] rmagroup8 <- rmafiltset[rmalist8,] rmagroup9 <- rmafiltset[rmalist9,] rmaglist1 <- featureNames(rmagroup1) rmaglist2 <- featureNames(rmagroup2) rmaglist3 <- featureNames(rmagroup3) rmaglist4 <- featureNames(rmagroup4) rmaglist5 <- featureNames(rmagroup5) rmaglist6 <- featureNames(rmagroup6) rmaglist7 <- featureNames(rmagroup7) rmaglist8 <- featureNames(rmagroup8) rmaglist9 <- featureNames(rmagroup9) rmaunion <- union(rmaglist1, union(rmaglist2, union(rmaglist3, union(rmaglist4, union(rmaglist5, union(rmaglist6, union(rmaglist7, union(rmaglist8, rmaglist9)))))))) rmaunionset <- rmafiltset[rmaunion,] plotdata2 <- exprs(rmaunionset) colnames(plotdata2) <- paste(pData(RMASet)$label) I go on to create a heatmap and html output of significant genes. My problem is that when I change kOverA(2, 7) to, say, kOverA(2, 6), I get fewer genes, I thought this should increase the number of genes I'm seeing in the final output. If I increase from 7 to 8 I still get a shorter list. It seems like 7 is the value that generates the maximum output. If anyone could explain why this is happening I would really appreciate it. If I should post more information please just let me know. Ray Roberts Lovelace Respiratory Research Institute [[alternative HTML version deleted]]
GO Preprocessing genefilter limma GO Preprocessing genefilter limma • 1.1k views
ADD COMMENT
0
Entering edit mode
rgentleman ★ 5.5k
@rgentleman-7725
Last seen 9.6 years ago
United States
Hi, That behavior seems somewhat unusual. Could you perhaps see which genes are selected for kOverA(2,7) and which for kOverA(2,6)? And then look at the expression values to see what might be going on.. Also please include the output of sessionInfo, as requested in the posting guide. Robert Roberts, Raymond wrote: > Dear List, > > > > I'm using genefilter and Limma to analyze the human exon array. I did > my preprocessing with aroma.affymetrix and then loaded it into limma and > used genefilter to isolate the significant genes. At least that is what > I think I am doing. Here is my script starting at the function I have > the question about > > > > > > ##Filter for differentialy expressed genes > > f1<-kOverA(2,7) > > ffun<-filterfun(f1) > > which<-genefilter(exprs(RMASet), ffun) > > rma_no<-summary(which) > > rmafiltset<-RMASet[which,] > > > > > > > > grps <- paste(pData(rmafiltset)$hours) > > lev <- c("time0", "time3", "time6", "time12", "time24", "time48") > > f <- factor(grps, levels = lev) > > design <- model.matrix(~ 0 + f) > > colnames(design) <- lev > > rmafit <- lmFit(rmafiltset, design) > > > > > > > > contrast.matrix <- makeContrasts("time3-time0", "time6-time3", > "time12-time6", "time24-time12", "time48-time24", "time6-time0", > "time12-time0", "time24-time0", "time48-time0", levels=design) > > rmafit2 <- contrasts.fit(rmafit, contrast.matrix) > > rmafit3 <- eBayes(rmafit2) > > > > > > pval<-0.05 > > l2foldch<- 0.58496250072 > > > > rmaresults<-decideTests(rmafit3, p.value=pval, lfc=l2foldch) > > > > > > rmalist1 <- rmaresults[,1]!=0 > > rmalist2 <- rmaresults[,2]!=0 > > rmalist3 <- rmaresults[,3]!=0 > > rmalist4 <- rmaresults[,4]!=0 > > rmalist5 <- rmaresults[,5]!=0 > > rmalist6 <- rmaresults[,6]!=0 > > rmalist7 <- rmaresults[,7]!=0 > > rmalist8 <- rmaresults[,8]!=0 > > rmalist9 <- rmaresults[,9]!=0 > > > > rmagroup1 <- rmafiltset[rmalist1,] > > rmagroup2 <- rmafiltset[rmalist2,] > > rmagroup3 <- rmafiltset[rmalist3,] > > rmagroup4 <- rmafiltset[rmalist4,] > > rmagroup5 <- rmafiltset[rmalist5,] > > rmagroup6 <- rmafiltset[rmalist6,] > > rmagroup7 <- rmafiltset[rmalist7,] > > rmagroup8 <- rmafiltset[rmalist8,] > > rmagroup9 <- rmafiltset[rmalist9,] > > > > rmaglist1 <- featureNames(rmagroup1) > > rmaglist2 <- featureNames(rmagroup2) > > rmaglist3 <- featureNames(rmagroup3) > > rmaglist4 <- featureNames(rmagroup4) > > rmaglist5 <- featureNames(rmagroup5) > > rmaglist6 <- featureNames(rmagroup6) > > rmaglist7 <- featureNames(rmagroup7) > > rmaglist8 <- featureNames(rmagroup8) > > rmaglist9 <- featureNames(rmagroup9) > > > > rmaunion <- union(rmaglist1, union(rmaglist2, union(rmaglist3, > union(rmaglist4, union(rmaglist5, union(rmaglist6, union(rmaglist7, > union(rmaglist8, rmaglist9)))))))) > > > > rmaunionset <- rmafiltset[rmaunion,] > > > > plotdata2 <- exprs(rmaunionset) > > colnames(plotdata2) <- paste(pData(RMASet)$label) > > > > > > I go on to create a heatmap and html output of significant genes. My > problem is that when I change kOverA(2, 7) to, say, kOverA(2, 6), I get > fewer genes, I thought this should increase the number of genes I'm > seeing in the final output. If I increase from 7 to 8 I still get a > shorter list. It seems like 7 is the value that generates the maximum > output. If anyone could explain why this is happening I would really > appreciate it. If I should post more information please just let me > know. > > > > > > Ray Roberts > > > > Lovelace Respiratory Research Institute > > > > > [[alternative HTML version deleted]] > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor > -- Robert Gentleman, PhD Program in Computational Biology Division of Public Health Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N, M2-B876 PO Box 19024 Seattle, Washington 98109-1024 206-667-7700 rgentlem at fhcrc.org
ADD COMMENT

Login before adding your answer.

Traffic: 834 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6