Single channel (numerical intensities) data import into BioConductor
1
0
Entering edit mode
@dozmorov-mikhail-g-hsc-2790
Last seen 10.2 years ago
We receive microarray data from processing facility in a simple format o background subtracted intensities, here's an example, tab delimited: Gene ID C1860gu C1775gu C1777gu AA278251 100.825641 82.30144928 222.4144928 AA401404 383.6702703 374.1666667 342.3405797 AA454191 100.7403727 175.2884199 135.4404762 AA460836 343.9164875 366.684058 351.8411658 AA723761 445.059587 451.999359 355.5185897 AA902654 400.1301282 431.4055556 367.1327381 AA905415 200.9855072 208.0207576 218.5183983 Thus, for each array (C2860gu,...) we have corresponding gene expression data. How to import this data into ESET object for further handling? Thank you!
Microarray Microarray • 796 views
ADD COMMENT
0
Entering edit mode
Marcelo Laia ▴ 450
@marcelo-laia-2007
Last seen 3.1 years ago
Brazil
2008/5/8 Dozmorov, Mikhail G. (HSC) <mikhail-dozmorov@ouhsc.edu>: > We receive microarray data from processing facility in a simple format o > background subtracted intensities, here's an example, tab delimited: > > Gene ID C1860gu C1775gu C1777gu > AA278251 100.825641 82.30144928 222.4144928 > AA401404 383.6702703 374.1666667 342.3405797 > AA454191 100.7403727 175.2884199 135.4404762 > AA460836 343.9164875 366.684058 351.8411658 > AA723761 445.059587 451.999359 355.5185897 > AA902654 400.1301282 431.4055556 367.1327381 > AA905415 200.9855072 208.0207576 218.5183983 > > Thus, for each array (C2860gu,...) we have corresponding gene expression > data. How to import this data into ESET object for further handling? > Thank you! > > > Hi Mikhail, Import into ESET I dont know how to do that, but I do something like this: > raw.data <- read.table("your_received_microarray_data.txt", sep="\t", dec=".", header=TRUE) > raw.data > raw.data2 <- raw.data[,2:4] > rownames(raw.data2) <- raw.data[,1] > raw.data2 > library(limma) > library(affy) > library(vsn) > raw.data2 <- as.matrix(raw.data2) > norm.data.quantiles <- normalize.quantiles(raw.data2) > # for normalization process you can use vsn, or others methods. > help.search("normalize") > norm.data.quantiles > rownames(norm.data.quantiles) <- raw.data[,1] > colnames(norm.data.quantiles) <- colnames(raw.data2) > norm.data.quantiles C1860gu C1775gu C1777gu AA278251 164.8775 106.1608 210.4736 AA401404 369.8927 369.8927 350.9804 AA454191 106.1608 164.8775 106.1608 AA460836 350.9804 350.9804 369.8927 AA723761 421.3972 421.3972 395.6848 AA902654 395.6848 395.6848 421.3972 AA905415 210.4736 210.4736 164.8775 > I think that there are a more sophisticated and more elegant way for to do this one! >From here you can use limma, or maanova, or samr, or other package that you prefer. I hope this help you. -- Marcelo Luiz de Laia Jaboticabal - SP - Brazil sip:marcelolaia@ekiga.net <sip%3amarcelolaia@ekiga.net> "Você vê as coisas como elas são e pergunta: por quê? Mas eu sonho com coisas que nunca foram e pergunto: por que não? " - Bernard Shaw [[alternative HTML version deleted]]
ADD COMMENT
0
Entering edit mode
2008/5/8 Dozmorov, Mikhail G. (HSC) <mikhail-dozmorov at="" ouhsc.edu="">: > We receive microarray data from processing facility in a simple format o > background subtracted intensities, here's an example, tab delimited: > > Gene ID C1860gu C1775gu C1777gu > AA278251 100.825641 82.30144928 222.4144928 > AA401404 383.6702703 374.1666667 342.3405797 > AA454191 100.7403727 175.2884199 135.4404762 > AA460836 343.9164875 366.684058 351.8411658 > AA723761 445.059587 451.999359 355.5185897 > AA902654 400.1301282 431.4055556 367.1327381 > AA905415 200.9855072 208.0207576 218.5183983 > > Thus, for each array (C2860gu,...) we have corresponding gene expression > data. How to import this data into ESET object for further handling? ?ExpressionSet is helpful. It will lead you in the following direction (try to ensure your file--here named data.txt--is free of extraneous white space since this may cause read.delim to interpret numerical data as character): library(Biobase) exp <- new("ExpressionSet", exprs=as.matrix(read.delim("c:/data.txt", row.names=1))) # that's all that is required to accomplish what you wanted, but here I will create # some fictitious and random pheno data to illustrate adding pheno data: pheno <- matrix(runif(12, 1, 10), nrow=3) # note that nrow(pheno) == ncol(exprs(eset)), as it must. rownames(pheno) <- colnames(exprs(exp)); colnames(pheno) <- c("WBC", "HgB", "AFP", "Age") pheno <- new("AnnotatedDataFrame", data=as.data.frame(pheno)) exp <- new("ExpressionSet", exprs=as.matrix(read.delim("c:/data.txt", row.names=1)), phenoData=pheno) # let's check our work pData(exp) WBC HgB AFP Age C1860gu 6.934886 7.284751 2.676714 8.815719 C1775gu 8.744655 7.067929 4.415327 7.904734 C1777gu 2.271367 4.686928 3.211371 6.035077 exprs(exp) C1860gu C1775gu C1777gu AA278251 100.8256 82.30145 222.4145 AA401404 383.6703 374.16667 342.3406 AA454191 100.7404 175.28842 135.4405 AA460836 343.9165 366.68406 351.8412 AA723761 445.0596 451.99936 355.5186 AA902654 400.1301 431.40556 367.1327 AA905415 200.9855 208.02076 218.5184 Cheers, Eric > Thank you! > > > This email message, including any attachments, is for th...{{dropped:6}}
ADD REPLY

Login before adding your answer.

Traffic: 528 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6