multtest MTP raw P values = 0
0
0
Entering edit mode
@timur-shtatland-2685
Last seen 10.4 years ago
Dear all, I used MTP from the multtest package to compute bootstrap based raw and adjusted t-test P values (group 1 = 7 samples, group 2 = 3 samples). Why are some raw P values in the output exactly zero? I could not change this by using scientific notation, with varying number of significant digits. In the example below, 10 digits are used; increasing this does not make a difference. I expected all P values > 0, with the minimum P value determined by the number of bootstrap iterations, here 1000. Hence the raw P value minimum should be 1e-03, as indeed the lowest *positive* P values are. Another question is: why some raw P values that are *equal* correspond to adjusted P values that are *different*? For example, raw P = 1e-03 corresponds to adjusted P = 8.4e-02, 8.6e-02, etc. I could not find the answer in the MTP help page, its vignettes, FAQ, etc. A similar, but not identical, problem was reported on this mailing list before, without a solution: https://stat.ethz.ch/pipermail/bioconductor/2007-December/020492.html Thank you for your help. Best regards, Timur -- Timur Shtatland, PhD Center for Molecular Imaging Research Massachusetts General Hospital 149 13th Street, Room 5408 Charlestown, MA 02129 tshtatland at mgh dot harvard dot edu ############################################################ > B <- 1000 > seed <- 99 > TTBoot <- MTP(X=esetGcrmaExprsFiltered, Y=TT, test = "t.twosamp.unequalvar", alternative = "two.sided", typeone="fdr", method="ss.maxT", fdr.method="conservative", B=B, seed=seed) running bootstrap... iteration = 100 200 300 400 500 600 700 800 900 1000 > print(TTBoot) Multiple Testing Procedure Object of class: MTP sample size = 10 number of hypotheses = 5413 test statistics = t.twosamp.unequalvar type I error rate = fdr nominal level alpha = 0.05 multiple testing procedure = ss.maxT Call: MTP(X = esetGcrmaExprsFiltered, Y = TT, test = "t.twosamp.unequalvar", alternative = "two.sided", typeone = "fdr", fdr.method = "conservative", B = B, method = "ss.maxT", seed = seed) Slots: Class Mode Length Dimension statistic numeric numeric 5413 estimate numeric numeric 5413 sampsize integer numeric 1 rawp numeric numeric 5413 adjp numeric numeric 5413 conf.reg array logical 0 0,0,0 cutoff matrix logical 0 0,0 reject matrix logical 5413 5413,1 nulldist matrix numeric 5413000 5413,1000 call call call 10 seed integer numeric 1 ... > MTPRes <- data.frame(PRaw=TTBoot at rawp, PAdj=TTBoot at adjp) > print(format(subset(MTPRes[order(MTPRes$PRaw, MTPRes$PAdj), ], PAdj < 0.1), digits=10, scientific=TRUE)) PRaw PAdj 202508_s_at 0e+00 0.000000000e+00 203130_s_at 0e+00 0.000000000e+00 206780_at 0e+00 0.000000000e+00 218820_at 0e+00 0.000000000e+00 205825_at 0e+00 8.000000000e-03 203000_at 0e+00 1.400000000e-02 204465_s_at 0e+00 1.400000000e-02 206282_at 0e+00 1.400000000e-02 206502_s_at 0e+00 1.400000000e-02 208399_s_at 0e+00 1.400000000e-02 209598_at 0e+00 1.400000000e-02 209755_at 0e+00 1.400000000e-02 212805_at 0e+00 1.400000000e-02 203001_s_at 0e+00 2.400000000e-02 204811_s_at 0e+00 2.400000000e-02 205174_s_at 0e+00 2.400000000e-02 205646_s_at 0e+00 2.400000000e-02 206051_at 0e+00 2.400000000e-02 212624_s_at 0e+00 2.800000000e-02 204035_at 0e+00 3.000000000e-02 221261_x_at 0e+00 3.200000000e-02 206915_at 0e+00 3.400000000e-02 206104_at 0e+00 4.000000000e-02 210036_s_at 0e+00 5.000000000e-02 218380_at 0e+00 5.000000000e-02 213135_at 0e+00 6.200000000e-02 204870_s_at 0e+00 6.400000000e-02 218952_at 0e+00 6.400000000e-02 205120_s_at 0e+00 6.600000000e-02 211597_s_at 0e+00 6.666666667e-02 205348_s_at 0e+00 6.800000000e-02 212190_at 0e+00 7.000000000e-02 213186_at 0e+00 7.000000000e-02 203485_at 0e+00 7.200000000e-02 203572_s_at 0e+00 8.400000000e-02 209583_s_at 0e+00 8.400000000e-02 212895_s_at 0e+00 8.400000000e-02 206001_at 0e+00 8.600000000e-02 206135_at 0e+00 8.600000000e-02 212843_at 0e+00 8.600000000e-02 204059_s_at 0e+00 8.800000000e-02 210826_x_at 0e+00 9.000000000e-02 213438_at 0e+00 9.000000000e-02 218675_at 0e+00 9.000000000e-02 201116_s_at 0e+00 9.200000000e-02 203272_s_at 0e+00 9.600000000e-02 204793_at 0e+00 9.800000000e-02 204720_s_at 1e-03 8.400000000e-02 221207_s_at 1e-03 8.400000000e-02 204540_at 1e-03 8.600000000e-02 209992_at 1e-03 8.888888889e-02 210246_s_at 1e-03 9.000000000e-02 > print(dim(esetGcrmaFiltered)) Features Samples 5413 10 > sessionInfo() R version 2.6.0 (2007-10-03) powerpc-apple-darwin8.10.1 locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 attached base packages: [1] splines tools stats graphics grDevices utils datasets methods base other attached packages: [1] multtest_1.18.0 affydata_1.11.3 affyQCReport_1.16.0 geneplotter_1.16.0 lattice_0.16-5 [6] annotate_1.16.1 AnnotationDbi_1.0.6 RSQLite_0.6-4 DBI_0.2-4 RColorBrewer_1.0-2 [11] affyPLM_1.14.0 xtable_1.5-2 simpleaffy_2.14.05 gcrma_2.10.0 matchprobes_1.10.0 [16] genefilter_1.16.0 survival_2.32 affy_1.16.0 preprocessCore_1.0.0 affyio_1.6.1 [21] Biobase_1.16.1 loaded via a namespace (and not attached): [1] KernSmooth_2.22-21 grid_2.6.0 > version _ platform powerpc-apple-darwin8.10.1 arch powerpc os darwin8.10.1 system powerpc, darwin8.10.1 status major 2 minor 6.0 year 2007 month 10 day 03 svn rev 43063 language R version.string R version 2.6.0 (2007-10-03) # platform: PowerPC G4, Mac OS 10.4.11. The information transmitted in this electronic communica...{{dropped:10}}
multtest multtest • 1.3k views
ADD COMMENT

Login before adding your answer.

Traffic: 519 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6