normalize.quantil, different results, affy_1.14.1 and affy_1.16.0
1
0
Entering edit mode
@markus-schmidberger-2240
Last seen 10.3 years ago
Hello, using "normalize.AffyBatch.quantiles" on R-2.5.0 with affy_1.14.1 and on R-2.6.0 with affy_1.16.0 generates different results! Is this correct? I think there were only some changes in the package structure (normalize.quantile moved to preprocessCore). So there should be no differences in the results. For testing I used the code below. Best regards Markus Schmidberger ##### library(affy) sessionInfo() affy affyio Biobase "1.14.1" "1.4.0" "1.14.0" pathCELFiles <- "/home/schmidb/tmp/E-TABM-185" celFile <- list.celfiles(path=pathCELFiles,full.names=TRUE)[1:5]; affyBatch <- ReadAffy(filenames=celFile); affyBatchALT <- normalize.AffyBatch.quantiles(affyBatch, type="pmonly") save(affyBatchALT, file="alt") ##### library(affy) sessionInfo() [1] affy_1.16.0 preprocessCore_1.0.0 affyio_1.6.1 [4] Biobase_1.16.1 pathCELFiles <- "/home/schmidb/tmp/E-TABM-185" celFile <- list.celfiles(path=pathCELFiles,full.names=TRUE)[1:5]; affyBatch <- ReadAffy(filenames=celFile); affyBatchNEU <- normalize.AffyBatch.quantiles(affyBatch, type="pmonly") save(affyBatchNEU, file="neu") ##### load("alt") load("neu") all.equal(exprs(affyBatchALT),exprs(affyBatchNEU)) "Mean relative difference: 0.0001107451"
affy affyio affy affyio • 1.1k views
ADD COMMENT
0
Entering edit mode
Ben Bolstad ★ 1.2k
@ben-bolstad-1494
Last seen 7.3 years ago
A priori I don't expect there to be any major differences. At one point I made a minor modification to how it dealt with ties. I also changed the C code that is used when you access quantile normalization code using normalize.quantiles() which is what normalize.AffyBatch.quantiles() is calling. This second change was made so that the function would handle NA values. rma() etc still call the older standard code, though this has also been adjusted slightly for the ties behavior meaning that there may be small differences in RMA expression values etc. The ties behavior affects situations where the number of values tied is even (odd numbers of ties were and remain handled in the same manner that they always have been). In the raw CEL file values you will often find large numbers of ties, thus this is what I suspect is driving your result. Best, Ben Short examples ####(using R-2.7 devel etc) > Toy.matrix <-cbind(c(1,2,3,3,3,3,7,8),1:8) > normalize.quantiles(Toy.matrix) [,1] [,2] [1,] 1.00 1.0 [2,] 2.00 2.0 [3,] 3.75 3.0 [4,] 3.75 3.5 [5,] 3.75 4.0 [6,] 3.75 4.5 [7,] 7.00 7.0 [8,] 8.00 8.0 > > Toy.matrix2 <-cbind(c(1,2,3,3,3,6,7,8),1:8) > normalize.quantiles(Toy.matrix2) [,1] [,2] [1,] 1.0 1.0 [2,] 2.0 2.0 [3,] 3.5 3.0 [4,] 3.5 3.5 [5,] 3.5 4.0 [6,] 6.0 6.0 [7,] 7.0 7.0 [8,] 8.0 8.0 > ####(using R-2.5.0 etc) > Toy.matrix <-cbind(c(1,2,3,3,3,3,7,8),1:8) > normalize.quantiles(Toy.matrix) [,1] [,2] [1,] 1.0 1.0 [2,] 2.0 2.0 [3,] 3.5 3.0 [4,] 3.5 3.5 [5,] 3.5 4.0 [6,] 3.5 4.5 [7,] 7.0 7.0 [8,] 8.0 8.0 > > Toy.matrix2 <-cbind(c(1,2,3,3,3,6,7,8),1:8) > normalize.quantiles(Toy.matrix2) [,1] [,2] [1,] 1.0 1.0 [2,] 2.0 2.0 [3,] 3.5 3.0 [4,] 3.5 3.5 [5,] 3.5 4.0 [6,] 6.0 6.0 [7,] 7.0 7.0 [8,] 8.0 8.0 Everything below can safely be ignored. Code I used for testing R-2.5.X series set of code: library(affy) set.seed(123456789) Data <- matrix(rnorm(10^7),ncol=10) Data.norm <- normalize.quantiles(Data) save(Data,Data.norm,file="old.Rda") sessionInfo() library(affydata) data(Dilution) Dilution.norm <- normalize.AffyBatch.quantiles(Dilution, type="pmonly") Dilution.old <- Dilution Dilution.pm.old <- pm(Dilution.old) Dilution.pm.norm.old <- normalize.quantiles(Dilution.pm.old) save(Dilution.norm, Dilution.old, Dilution.pm.old, Dilution.pm.norm.old, file="Dil-old.Rda") Toy.matrix <-cbind(c(1,2,3,3,3,3,7,8),1:8) normalize.quantiles(Toy.matrix) Toy.matrix2 <-cbind(c(1,2,3,3,3,6,7,8),1:8) normalize.quantiles(Toy.matrix2) eset.old <- rma(Dilution) exprvals.old <- exprs(eset.old) save(exprvals.old,file="ev_old.Rda") Output from this code: > library(affy) Loading required package: Biobase Loading required package: tools Welcome to Bioconductor Vignettes contain introductory material. To view, type 'openVignette()'. To cite Bioconductor, see 'citation("Biobase")' and for packages 'citation(pkgname)'. Loading required package: affyio > set.seed(123456789) > Data <- matrix(rnorm(10^7),ncol=10) > Data.norm <- normalize.quantiles(Data) > save(Data,Data.norm,file="old.Rda") > sessionInfo() R version 2.5.0 (2007-04-23) x86_64-unknown-linux-gnu locale: LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US .UTF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US. UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8 ;LC_IDENTIFICATION=C attached base packages: [1] "tools" "stats" "graphics" "grDevices" "utils" "datasets" [7] "methods" "base" other attached packages: affy affyio Biobase "1.14.1" "1.4.1" "1.14.0" > library(affydata) > data(Dilution) > Dilution.norm <- normalize.AffyBatch.quantiles(Dilution, type="pmonly") > Dilution.old <- Dilution > Dilution.pm.old <- pm(Dilution.old) > Dilution.pm.norm.old <- normalize.quantiles(Dilution.pm.old) > save(Dilution.norm, Dilution.old, Dilution.pm.old, Dilution.pm.norm.old, file="Dil-old.Rda") > > Toy.matrix <-cbind(c(1,2,3,3,3,3,7,8),1:8) > normalize.quantiles(Toy.matrix) [,1] [,2] [1,] 1.0 1.0 [2,] 2.0 2.0 [3,] 3.5 3.0 [4,] 3.5 3.5 [5,] 3.5 4.0 [6,] 3.5 4.5 [7,] 7.0 7.0 [8,] 8.0 8.0 > > Toy.matrix2 <-cbind(c(1,2,3,3,3,6,7,8),1:8) > normalize.quantiles(Toy.matrix2) [,1] [,2] [1,] 1.0 1.0 [2,] 2.0 2.0 [3,] 3.5 3.0 [4,] 3.5 3.5 [5,] 3.5 4.0 [6,] 6.0 6.0 [7,] 7.0 7.0 [8,] 8.0 8.0 > > eset.old <- rma(Dilution) Background correcting Normalizing Calculating Expression > exprvals.old <- exprs(eset.old) > save(exprvals.old,file="ev_old.Rda") Code I used for testing R-2.7 series set of code: library(affy) set.seed(123456789) Data.new <- matrix(rnorm(10^7),ncol=10) Data.norm.new <- normalize.quantiles(Data.new) load("old.Rda") sessionInfo() all.equal(Data.new,Data) all.equal(Data.norm.new,Data.norm) library(affydata) data(Dilution) Dilution.norm.new <- normalize.AffyBatch.quantiles(Dilution, type="pmonly") Dilution.new <- Dilution Dilution.pm.new <- pm(Dilution.new) Dilution.pm.norm.new <- normalize.quantiles(Dilution.pm.new) load("Dil-old.Rda") all.equal(exprs(Dilution.norm),exprs(Dilution.norm.new)) sum(exprs(Dilution.norm) != exprs(Dilution.norm.new)) all.equal(Dilution.pm.old,Dilution.pm.new) all.equal(Dilution.pm.norm.old,Dilution.pm.norm.new) length(Dilution.pm.new[,1]) length(unique(Dilution.pm.new[,1])) ### looking at the relative differences plot(1/2*log2(Dilution.pm.norm.new*Dilution.pm.norm.old),abs(log2(Dilu tion.pm.norm.new/Dilution.pm.norm.old))) ### visually seeing just how many ties there really are par(mfrow=c(2,2)) barplot(table(Dilution.pm.new[,1])) barplot(table(Dilution.pm.new[,2])) barplot(table(Dilution.pm.new[,3])) barplot(table(Dilution.pm.new[,4])) Toy.matrix <- cbind(c(1,2,3,3,3,3,7,8),1:8) normalize.quantiles(Toy.matrix) Toy.matrix2 <-cbind(c(1,2,3,3,3,6,7,8),1:8) normalize.quantiles(Toy.matrix2) eset.new <- rma(Dilution) exprvals.new <- exprs(eset.new) load("ev_old.Rda") max(exprvals.old - exprvals.new) ### output > library(affy) Loading required package: Biobase Loading required package: tools Welcome to Bioconductor Vignettes contain introductory material. To view, type 'openVignette()'. To cite Bioconductor, see 'citation("Biobase")' and for packages 'citation(pkgname)'. Loading required package: affyio Loading required package: preprocessCore > set.seed(123456789) > Data.new <- matrix(rnorm(10^7),ncol=10) > Data.norm.new <- normalize.quantiles(Data.new) > load("old.Rda") > sessionInfo() R version 2.7.0 Under development (unstable) (2008-02-02 r44303) x86_64-unknown-linux-gnu locale: LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US .UTF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US. UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8 ;LC_IDENTIFICATION=C attached base packages: [1] tools stats graphics grDevices utils datasets methods [8] base other attached packages: [1] affy_1.17.3 preprocessCore_1.1.5 affyio_1.7.11 [4] Biobase_1.17.9 > all.equal(Data.new,Data) [1] TRUE > all.equal(Data.norm.new,Data.norm) [1] TRUE > library(affydata) > data(Dilution) > > Dilution.norm.new <- normalize.AffyBatch.quantiles(Dilution, type="pmonly") > Dilution.new <- Dilution > Dilution.pm.new <- pm(Dilution.new) > Dilution.pm.norm.new <- normalize.quantiles(Dilution.pm.new) > > > > load("Dil-old.Rda") > all.equal(exprs(Dilution.norm),exprs(Dilution.norm.new)) [1] "Mean relative difference: 7.334068e-05" > sum(exprs(Dilution.norm) != exprs(Dilution.norm.new)) [1] 36770 > all.equal(Dilution.pm.old,Dilution.pm.new) [1] TRUE > all.equal(Dilution.pm.norm.old,Dilution.pm.norm.new) [1] "Mean relative difference: 7.334068e-05" > > length(Dilution.pm.new[,1]) [1] 201800 > length(unique(Dilution.pm.new[,1])) [1] 12578 > > ### looking at the relative differences > plot(1/2*log2(Dilution.pm.norm.new*Dilution.pm.norm.old),abs(log2(Dilu tion.pm.norm.new/Dilution.pm.norm.old))) > > ### visually seeing just how many ties there really are > par(mfrow=c(2,2)) > barplot(table(Dilution.pm.new[,1])) > barplot(table(Dilution.pm.new[,2])) > barplot(table(Dilution.pm.new[,3])) > barplot(table(Dilution.pm.new[,4])) > > > Toy.matrix <-cbind(c(1,2,3,3,3,3,7,8),1:8) > normalize.quantiles(Toy.matrix) [,1] [,2] [1,] 1.00 1.0 [2,] 2.00 2.0 [3,] 3.75 3.0 [4,] 3.75 3.5 [5,] 3.75 4.0 [6,] 3.75 4.5 [7,] 7.00 7.0 [8,] 8.00 8.0 > > Toy.matrix2 <-cbind(c(1,2,3,3,3,6,7,8),1:8) > normalize.quantiles(Toy.matrix2) [,1] [,2] [1,] 1.0 1.0 [2,] 2.0 2.0 [3,] 3.5 3.0 [4,] 3.5 3.5 [5,] 3.5 4.0 [6,] 6.0 6.0 [7,] 7.0 7.0 [8,] 8.0 8.0 > > eset.new <- rma(Dilution) Background correcting Normalizing Calculating Expression > exprvals.new <- exprs(eset.new) > load("ev_old.Rda") > max(exprvals.old - exprvals.new) [1] 0.01004166 On Fri, 2008-02-15 at 12:11 +0100, Markus Schmidberger wrote: > Hello, > > using "normalize.AffyBatch.quantiles" on R-2.5.0 with affy_1.14.1 and on > R-2.6.0 with affy_1.16.0 generates different results! Is this correct? > I think there were only some changes in the package structure > (normalize.quantile moved to preprocessCore). So there should be no > differences in the results. > > For testing I used the code below. > > Best regards > Markus Schmidberger > > > ##### > library(affy) > sessionInfo() > > affy affyio Biobase > "1.14.1" "1.4.0" "1.14.0" > > pathCELFiles <- "/home/schmidb/tmp/E-TABM-185" > celFile <- list.celfiles(path=pathCELFiles,full.names=TRUE)[1:5]; > affyBatch <- ReadAffy(filenames=celFile); > affyBatchALT <- normalize.AffyBatch.quantiles(affyBatch, type="pmonly") > > save(affyBatchALT, file="alt") > > ##### > library(affy) > sessionInfo() > > [1] affy_1.16.0 preprocessCore_1.0.0 affyio_1.6.1 > [4] Biobase_1.16.1 > > pathCELFiles <- "/home/schmidb/tmp/E-TABM-185" > celFile <- list.celfiles(path=pathCELFiles,full.names=TRUE)[1:5]; > affyBatch <- ReadAffy(filenames=celFile); > affyBatchNEU <- normalize.AffyBatch.quantiles(affyBatch, type="pmonly") > > save(affyBatchNEU, file="neu") > > ##### > load("alt") > load("neu") > > all.equal(exprs(affyBatchALT),exprs(affyBatchNEU)) > "Mean relative difference: 0.0001107451" > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
ADD COMMENT

Login before adding your answer.

Traffic: 518 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6