Bioconductor Digest, Vol 41, Issue 4
1
0
Entering edit mode
@gordon-smyth
Last seen 4 hours ago
WEHI, Melbourne, Australia
>Date: Mon, 3 Jul 2006 09:52:44 -0400 >From: "Wang, Sue Jane" <suejane.wang at="" fda.hhs.gov=""> >Subject: [BioC] Reference for Volcano plot >To: bioconductor at stat.math.ethz.ch > >Dear Anthony Bosco, > >Have you found the reference for volcano plot? I am looking for such a >reference, too. Thanks. > >Sue-Jane Wang Jin, W., Riley, R. M., Wolfinger, R. D., White, K. P., Passador-Gurgel, G., and Gibson, G. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics 29, 389 - 395. Best wishes Gordon
Genetics Genetics • 1.1k views
ADD COMMENT
0
Entering edit mode
@pedro-lopez-romero-1618
Last seen 10.3 years ago
Dear list I am trying to calculate the moderated t-statistic by hand for a given gene[i], and it is not equal to the moderated t value that eBayes ( ) gives.- After fitting my model I can recover the following values for gene [1] : > fit$stdev.unscaled[1] # from lmFit (...,) [1] 0.5774 > fit2$coeff[1] # from eBayes(...,) [1] -0.0468 > fit2$s2.post[1] [1] 0.5344 > fit2$t[1] [1] -0.1421 and *manually* the moderated t-statistic is: > fit2$coeff[1]/(fit$stdev.unscaled[1]*fit2$s2.post[1]) [1] -0.1517 Did I do something wrong? Thanks a lot.- Pedro
ADD COMMENT
0
Entering edit mode
Hi Pedro, If you look at the code for 'ebayes', you'll see that the moderated t is calculated as: out$t <- coefficients/stdev.unscaled/sqrt(out$s2.post) However, when I check with the numbers you show, I don't get the same answer as your fit2$t[1] either, so I don't know what's going on with your data: > -0.0468 / 0.5774 / sqrt(0.5344) [1] -0.1108756 Could a rounding issue make the resulting value that far off? Best, Jenny At 06:32 AM 7/6/2006, Pedro L?pez Romero wrote: >Dear list > >I am trying to calculate the moderated t-statistic by hand for a given >gene[i], and it is not equal to the moderated t value that eBayes ( ) >gives.- > > >After fitting my model I can recover the following values for gene [1] : > > > fit$stdev.unscaled[1] # from lmFit (...,) >[1] 0.5774 > > > fit2$coeff[1] # from eBayes(...,) >[1] -0.0468 > > > fit2$s2.post[1] >[1] 0.5344 > > > fit2$t[1] >[1] -0.1421 > > >and *manually* the moderated t-statistic is: > > > fit2$coeff[1]/(fit$stdev.unscaled[1]*fit2$s2.post[1]) >[1] -0.1517 > > >Did I do something wrong? > >Thanks a lot.- > >Pedro > >_______________________________________________ >Bioconductor mailing list >Bioconductor at stat.math.ethz.ch >https://stat.ethz.ch/mailman/listinfo/bioconductor >Search the archives: >http://news.gmane.org/gmane.science.biology.informatics.conductor Jenny Drnevich, Ph.D. Functional Genomics Bioinformatics Specialist W.M. Keck Center for Comparative and Functional Genomics Roy J. Carver Biotechnology Center University of Illinois, Urbana-Champaign 330 ERML 1201 W. Gregory Dr. Urbana, IL 61801 USA ph: 217-244-7355 fax: 217-265-5066 e-mail: drnevich at uiuc.edu
ADD REPLY
0
Entering edit mode
Thanks Jenny for the replay.- I have figure out how the thinks work. Yes, first my *manual* computation was wrong, I was using the post variance ($s2.post) instead of the sqrt($s2.post). Moreover, I was using the unscaled std. deviation of the coefficient estimators (alphas) instead of the contrasts estimators (betas). Now things are ok.- Thanks, Another example: # my contrasts coefficients for gene[1] > fit2$coeff[1,] t0t2 t0t4 t0t6 t0t8 t0t12 t0t17 -1.0583707 -0.5563955 -0.1422278 -0.8344021 0.2376717 -0.2515570 # posterior variance for gene[1] > fit2$s2.post[1] GE102212 0.05001711 # unscaled std. deviations > head(fit$stdev.unscaled) ttoEFFw0 ttoEFFw2 ttoEFFw4 ttoEFFw6 ttoEFFw8 ttoEFFw12 ttoEFFw17 0.5773503 0.5773503 0.5773503 0.5773503 0.5773503 0.5773503 0.7071068 # moderated t-stat > fit2$coeff[1,]/fit2$stdev.unscaled[1]/sqrt(fit2$s2.post[1]) t0t2 t0t4 t0t6 t0t8 t0t12 t0t17 -5.7959432 -3.0469823 -0.7788807 -4.5694269 1.3015588 -1.3775986 # moderated t-stat > fit2$t[1,] t0t2 t0t4 t0t6 t0t8 t0t12 t0t17 -5.7959432 -3.0469823 -0.7788807 -4.5694269 1.3015588 -1.2321617 pedro.- -----Mensaje original----- De: Jenny Drnevich [mailto:drnevich at uiuc.edu] Enviado el: jueves, 06 de julio de 2006 18:26 Para: Pedro L?pez Romero; bioconductor at stat.math.ethz.ch Asunto: Re: [BioC] moderated t statistic in limma Hi Pedro, If you look at the code for 'ebayes', you'll see that the moderated t is calculated as: out$t <- coefficients/stdev.unscaled/sqrt(out$s2.post) However, when I check with the numbers you show, I don't get the same answer as your fit2$t[1] either, so I don't know what's going on with your data: > -0.0468 / 0.5774 / sqrt(0.5344) [1] -0.1108756 Could a rounding issue make the resulting value that far off? Best, Jenny At 06:32 AM 7/6/2006, Pedro L?pez Romero wrote: >Dear list > >I am trying to calculate the moderated t-statistic by hand for a given >gene[i], and it is not equal to the moderated t value that eBayes ( ) >gives.- > > >After fitting my model I can recover the following values for gene [1] : > > > fit$stdev.unscaled[1] # from lmFit (...,) >[1] 0.5774 > > > fit2$coeff[1] # from eBayes(...,) >[1] -0.0468 > > > fit2$s2.post[1] >[1] 0.5344 > > > fit2$t[1] >[1] -0.1421 > > >and *manually* the moderated t-statistic is: > > > fit2$coeff[1]/(fit$stdev.unscaled[1]*fit2$s2.post[1]) >[1] -0.1517 > > >Did I do something wrong? > >Thanks a lot.- > >Pedro > >_______________________________________________ >Bioconductor mailing list >Bioconductor at stat.math.ethz.ch >https://stat.ethz.ch/mailman/listinfo/bioconductor >Search the archives: >http://news.gmane.org/gmane.science.biology.informatics.conductor Jenny Drnevich, Ph.D. Functional Genomics Bioinformatics Specialist W.M. Keck Center for Comparative and Functional Genomics Roy J. Carver Biotechnology Center University of Illinois, Urbana-Champaign 330 ERML 1201 W. Gregory Dr. Urbana, IL 61801 USA ph: 217-244-7355 fax: 217-265-5066 e-mail: drnevich at uiuc.edu
ADD REPLY

Login before adding your answer.

Traffic: 671 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6