I'm attempting to re-analyze some old microarray data. The microarrays are in NimbleGen format, originally .pair files, but i have (successfully) converted them to .xys files. I would like to normalize them together, as one data set, using oligo
. The issues is that one of the microarrays uses the 090901RatHX12expr.ndf design file and the other two use 100718RatHX12expr.ndf.
My question is: is it possible to create one dataset of all 3 arrays, using oligo
, despite having two different design files?
I can generate an ExpressionFeatureSet of the first array with the different design file, and a separate set of the other two arrays. When I've tried creating one set using all three arrays, I get the below error:
allData <- read.xysfiles(allXYS, phenoData = allPD, checkType = F)
Loading required package: pd.090901.rat.hx12.expr
Platform design info loaded.
Checking designs for each XYS file... Error in smartReadXYS(filenames, sampleNames) :
'./raw-data/xysfiles/BR1/P32_control_apex_A01_532.xys' and './raw-data/xysfiles/BR2/531207_A01_EB-P32-SGN-CA_2012-03-16_532.xys' use different designs.
Here is the code used to generate the list of .xys files and other information need to generate the ExpressionFeatureSet:
allXYS <- c(BR1xys, BR2xys, BR3xys)
#metadata
allConditions <- data.frame(Key=rep(c("P32HA", "P32HB", "P32DA", "P32DB", "P60HA", "P60HB", "P60DA", "P60DB", "P32HA", "P32HB", "P32DA", "P32DB", "P60HA", "P60HB", "P60DA", "P60DB", "P32DA", "P32DB", "P32HA", "P32HB", "P60DA", "P60DB", "P60HA", "P60HB"), each=3))
rownames(allConditions) <- basename(allXYS)
allLVLs <- c("exprs", "_ALL_")
allMtData <- data.frame(channel=factor("exprs", levels=allLVLs), labelDescription="Sample type")
allPD <- new("AnnotatedDataFrame", data=allConditions, varMetadata=allMtData)
#ExpressionFeatureSet
allData <- read.xysfiles(allXYS, phenoData = allPD, checkType = F)
> sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Fedora 30 (MATE-Compiz)
Matrix products: default
BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets methods base
other attached packages:
[1] pd.090901.rat.hx12.expr_0.0.1 pd.100718.rat.hx12.expr_0.0.1 DBI_1.1.0 genefilter_1.64.0
[5] limma_3.38.3 pdInfoBuilder_1.46.0 oligo_1.46.0 Biostrings_2.50.2
[9] XVector_0.22.0 IRanges_2.16.0 S4Vectors_0.20.1 affxparser_1.54.0
[13] RSQLite_2.1.5 Biobase_2.42.0 BiocGenerics_0.28.0 oligoClasses_1.44.0
loaded via a namespace (and not attached):
[1] SummarizedExperiment_1.12.0 xfun_0.11 splines_3.5.3 lattice_0.20-38
[5] vctrs_0.2.1 yaml_2.2.0 blob_1.2.0 XML_3.98-1.20
[9] survival_3.1-8 rlang_0.4.1 pillar_1.4.3 BiocParallel_1.16.6
[13] bit64_0.9-7 affyio_1.52.0 matrixStats_0.55.0 GenomeInfoDbData_1.2.0
[17] foreach_1.4.7 zlibbioc_1.28.0 codetools_0.2-16 memoise_1.1.0
[21] knitr_1.25 ff_2.2-14 GenomeInfoDb_1.18.2 AnnotationDbi_1.44.0
[25] preprocessCore_1.44.0 Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5
[29] BiocManager_1.30.10 DelayedArray_0.8.0 annotate_1.60.1 bit_1.1-14
[33] digest_0.6.23 GenomicRanges_1.34.0 grid_3.5.3 tools_3.5.3
[37] bitops_1.0-6 RCurl_1.95-4.12 tibble_2.1.3 crayon_1.3.4
[41] pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-15 rstudioapi_0.10
[45] iterators_1.0.12 compiler_3.5.3