Hi
I have been trying to analyses a microarray dataset GSE85543 which has been done using Affymetrix HT HG-U133+ PM Array Plate.
I used to annotate microarray data using affycoretools::annotateEset and the corresponding ChipDB package (e.g. hgu133plus2.db) The reference manual for affycoretools indicate that annotateEset can work with either a ChipDB object or an AffyGenePDInfo.
However, when I try to annotate my data (post rma), I get the following error :
"There is no annotation object provided with the x package"
What does this mean ? Is there a problem with the package ? Or did I do something wrong ?
Code :
library("BiocManager")
library("GEOquery")
library("affy")
library("oligo")
library("pd.ht.hg.u133.plus.pm")
library("affycoretools")
library("ggplot2")
celpath = "C:/Users/pgiroud/OneDrive - Elsalys Biotech/Bioinfo/GSE85543/CEL/"
celFiles <- list.celfiles(celpath, full.names=TRUE)
data <- oligo::read.celfiles(celFiles)
data.rma = oligo::rma(data, background=TRUE, normalize=TRUE)
data.ann <- affycoretools::annotateEset(data.rma, pd.ht.hg.u133.plus.pm)
Session Info :
R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France.1252 LC_MONETARY=French_France.1252
[4] LC_NUMERIC=C LC_TIME=French_France.1252
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets methods base
other attached packages:
[1] affycoretools_1.58.2 pd.ht.hg.u133.plus.pm_3.12.0 DBI_1.0.0
[4] RSQLite_2.1.4 oligo_1.50.0 ggplot2_3.2.1
[7] Biostrings_2.54.0 XVector_0.26.0 IRanges_2.20.1
[10] S4Vectors_0.24.1 oligoClasses_1.48.0 affy_1.64.0
[13] GEOquery_2.54.1 Biobase_2.46.0 BiocGenerics_0.32.0
[16] BiocManager_1.30.10
loaded via a namespace (and not attached):
[1] backports_1.1.5 GOstats_2.52.0 Hmisc_4.3-0
[4] BiocFileCache_1.10.2 plyr_1.8.4 lazyeval_0.2.2
[7] GSEABase_1.48.0 splines_3.6.1 BiocParallel_1.20.0
[10] GenomeInfoDb_1.22.0 digest_0.6.23 ensembldb_2.10.2
[13] foreach_1.4.7 htmltools_0.4.0 GO.db_3.10.0
[16] gdata_2.18.0 magrittr_1.5 checkmate_1.9.4
[19] memoise_1.1.0 BSgenome_1.54.0 cluster_2.1.0
[22] gcrma_2.58.0 limma_3.42.0 readr_1.3.1
[25] annotate_1.64.0 matrixStats_0.55.0 R.utils_2.9.2
[28] ggbio_1.34.0 askpass_1.1 prettyunits_1.0.2
[31] colorspace_1.4-1 blob_1.2.0 rappdirs_0.3.1
[34] xfun_0.11 dplyr_0.8.3 crayon_1.3.4
[37] RCurl_1.95-4.12 graph_1.64.0 genefilter_1.68.0
[40] zeallot_0.1.0 VariantAnnotation_1.32.0 survival_3.1-8
[43] iterators_1.0.12 glue_1.3.1 gtable_0.3.0
[46] zlibbioc_1.32.0 DelayedArray_0.12.0 Rgraphviz_2.30.0
[49] scales_1.1.0 GGally_1.4.0 edgeR_3.28.0
[52] Rcpp_1.0.3 xtable_1.8-4 progress_1.2.2
[55] htmlTable_1.13.3 foreign_0.8-72 bit_1.1-14
[58] OrganismDbi_1.28.0 preprocessCore_1.48.0 Formula_1.2-3
[61] AnnotationForge_1.28.0 htmlwidgets_1.5.1 httr_1.4.1
[64] gplots_3.0.1.1 RColorBrewer_1.1-2 ellipsis_0.3.0
[67] acepack_1.4.1 ff_2.2-14 R.methodsS3_1.7.1
[70] pkgconfig_2.0.3 reshape_0.8.8 XML_3.98-1.20
[73] nnet_7.3-12 dbplyr_1.4.2 locfit_1.5-9.1
[76] tidyselect_0.2.5 rlang_0.4.2 reshape2_1.4.3
[79] AnnotationDbi_1.48.0 munsell_0.5.0 tools_3.6.1
[82] stringr_1.4.0 knitr_1.26 bit64_0.9-7
[85] caTools_1.17.1.3 purrr_0.3.3 AnnotationFilter_1.10.0
[88] RBGL_1.62.1 R.oo_1.23.0 xml2_1.2.2
[91] biomaRt_2.42.0 compiler_3.6.1 rstudioapi_0.10
[94] curl_4.3 affyio_1.56.0 PFAM.db_3.10.0
[97] tibble_2.1.3 geneplotter_1.64.0 stringi_1.4.3
[100] GenomicFeatures_1.38.0 lattice_0.20-38 ProtGenerics_1.18.0
[103] Matrix_1.2-18 vctrs_0.2.0 pillar_1.4.2
[106] lifecycle_0.1.0 data.table_1.12.6 bitops_1.0-6
[109] rtracklayer_1.46.0 GenomicRanges_1.38.0 hwriter_1.3.2
[112] R6_2.4.1 latticeExtra_0.6-28 KernSmooth_2.23-16
[115] gridExtra_2.3 affxparser_1.58.0 codetools_0.2-16
[118] dichromat_2.0-0 gtools_3.8.1 assertthat_0.2.1
[121] SummarizedExperiment_1.16.0 openssl_1.4.1 DESeq2_1.26.0
[124] Category_2.52.1 ReportingTools_2.26.0 withr_2.1.2
[127] GenomicAlignments_1.22.1 Rsamtools_2.2.1 GenomeInfoDbData_1.2.2
[130] hms_0.5.2 grid_3.6.1 rpart_4.1-15
[133] tidyr_1.0.0 biovizBase_1.34.1 base64enc_0.1-3
Hi James,
Thank you for the explanation ! You are right, it's the same chip as the hgu133plus2, but with only perfect match (PM) probes. I do not succeed however in making your solution work. I get the following message :
My bad. It should be
Hello James,
I still met some problems as probename were not exactly the same between hgu133plus2.db and my data :
I got around with this :
Also I removed
"PROBEID"
because it returned a memory error.But now, I get stuck at the next steps when I thought I had it all figured out. The next time return :
So from what I understand, the problem is that :
Is this normal that so many probes return no gene, given it should be a "Perfect macth" only array ? How do I solve this issue ?
EDIT : I found the problem : I removed the PM in the probename in my feature data, but my Assaydata still have it, so I try to insert feature data looking like this "1007sat", in a Eset with assaydata whose featureNames look like this "1007PMs_at". Instead of removing PM, I should add it. I will search how to do this
It works like this :
I just removed the PM also in my data.