cqn vignette error
0
0
Entering edit mode
Jenny Drnevich ★ 2.0k
@jenny-drnevich-2812
Last seen 5 months ago
United States

I recently started using the cqn package and have found a small error in the vignette. In code chunk 17, the glm.offset is put into the d.montobject and then estimateGLMCommonDisp is run to create a new object d.mont.cqn:

###################################################
### code chunk number 17: edgeRdisp
###################################################
design <- model.matrix(~ d.mont$sample$group)
d.mont$offset <- cqn.subset$glm.offset
d.mont.cqn <- estimateGLMCommonDisp(d.mont, design = design)

All this is fine and the results are shown in chunk 19:

> ###################################################
> ### code chunk number 19: cqn.Rnw:264-265
> ###################################################
> summary(decideTestsDGE(elrt.cqn))
       d.mont$sample$groupgrp2
Down                       146
NotSig                   22971
Up                         435

However, in code chunk 20 the d.mont object is re-used, but since it still contains the glm.offset, the results are exactly the same:

> ###################################################
> ### code chunk number 20: edgeRstd
> ###################################################
> d.mont.std <- estimateGLMCommonDisp(d.mont, design = design)
> efit.std <- glmFit(d.mont.std, design = design)
> elrt.std <- glmLRT(efit.std, coef = 2)
> summary(decideTestsDGE(elrt.std))
       d.mont$sample$groupgrp2
Down                       146
NotSig                   22971
Up                         435

The quickest fix would be to just set the offsets back to NULL:

> d.mont$offset <- NULL
> d.mont.std <- estimateGLMCommonDisp(d.mont, design = design)
> efit.std <- glmFit(d.mont.std, design = design)
> elrt.std <- glmLRT(efit.std, coef = 2)
> summary(decideTestsDGE(elrt.std))
       d.mont$sample$groupgrp2
Down                       211
NotSig                   23086
Up                         255

I might also suggest updating to the edgeR-quasi method as it's the new preferred way. Here are the codes I've been using:

> ###################################################
> ### code chunk number 17: edgeRdisp
> ###################################################
> design <- model.matrix(~ d.mont$sample$group)
> d.mont$offset <- cqn.subset$glm.offset
> d.mont.cqn <- estimateDisp(d.mont, design = design) 
> 
> 
> ###################################################
> ### code chunk number 18: edgeRfit
> ###################################################
> efit.cqn <- glmQLFit(d.mont.cqn, design = design)
> eqlf.cqn <- glmQLFTest(efit.cqn, coef = 2)
> topTags(eqlf.cqn, n = 2)
Coefficient:  d.mont$sample$groupgrp2 
                length gccontent      logFC   logCPM        F       PValue         FDR
ENSG00000253701    359 0.6100279   7.504784 3.608416 55.69780 6.437842e-08 0.001516241
ENSG00000211642    365 0.5835616 -10.252487 6.362877 28.67522 1.329693e-05 0.156584594
> 
> 
> ###################################################
> ### code chunk number 19: cqn.Rnw:264-265
> ###################################################
> summary(decideTestsDGE(eqlf.cqn))
       d.mont$sample$groupgrp2
Down                         0
NotSig                   23551
Up                           1
> 
> ###################################################
> ### code chunk number 20: edgeRstd
> ###################################################
> d.mont$offset <- NULL
> d.mont.std <- estimateDisp(d.mont, design = design)
> efit.std <- glmQLFit(d.mont.std, design = design)
> eqlf.std <- glmQLFTest(efit.std, coef = 2)
> summary(decideTestsDGE(eqlf.std))
       d.mont$sample$groupgrp2
Down                        10
NotSig                   23534
Up                           8

Although with the edgeR-quasi method, very few genes reach the FDR < 0.05 threshold in this example.

Thanks for the cqn package!

> sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] splines   stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] edgeR_3.28.0          limma_3.42.0          scales_1.1.0          cqn_1.32.0           
[5] quantreg_5.52         SparseM_1.77          preprocessCore_1.48.0 nor1mix_1.3-0        
[9] mclust_5.4.5         

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.3         locfit_1.5-9.1     lattice_0.20-38    grid_3.6.1         R6_2.4.1          
 [6] lifecycle_0.1.0    MatrixModels_0.4-1 rlang_0.4.2        farver_2.0.1       Matrix_1.2-17     
[11] tools_3.6.1        munsell_0.5.0      compiler_3.6.1     colorspace_1.4-1 
cqn normalization edger • 864 views
ADD COMMENT

Login before adding your answer.

Traffic: 636 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6