gwascat: error regarding mismatched genome builds when using makeCurrentGwascat()
0
0
Entering edit mode
maya.kappil ▴ 30
@mayakappil-18569
Last seen 5.3 years ago

Hello,

I was able to match some disease traits to SNPs I'm interested in based on the NHGRI GWAS catalog website, and I'm now interested to use the gwascat R package to plot my findings with these GWAS hits. These GWAS hits were published relatively recently, so I'm not able to utilize the preloaded ebicat38 dataset. However, I run into an error when loading a more current dataset using makeCurrentGwascat(). I'm wondering if there is anything I should change in the following script to overcome the error. Thank you!

library(gwascat)

load current version of GWAS catalog

newcatr<-makeCurrentGwascat(genome="GRCh38")

ACSL3 GRCh38/hg38 coordinates

chr<-'chr2' from<-222860934 to<- 222944639

ACSL3_anno = GRanges(seqnames=chr, ranges=IRanges(start=from,end=to))

match formatting of both GRanges

seqlevelsStyle(ACSL3anno) = "UCSC" seqlevelsStyle(newcatr) = "UCSC" genome(ACSL3anno)<-"GRCh38" genome(newcatr)<-"GRCh38"

check genome builds match

ACSL3_anno *GRanges object with 1 range and 0 metadata columns: seqnames ranges strand <rle> <iranges> <rle> [1] chr2 222860934-222944639 *


seqinfo: 1 sequence from GRCh38 genome; no seqlengths*

newcatr gwasloc instance with 6 records and 38 attributes per record. Extracted: 2019-07-19 Genome: GRCh38 Excerpt: GRanges object with 5 ranges and 3 metadata columns: seqnames ranges strand | <rle> <iranges> <rle> | [1] chr6 32251212 * | [2] chr6 32441753 * | [3] chr6 33075103 * |

basic = gwcex2gviz(basegr = newcatr, contextGR=ACSL3_anno,plot.it=FALSE)

Error in mergeNamedAtomicVectors(genome(x), genome(y), what = c("sequence", : sequence chr2 has incompatible genomes: - in 'x': hg19 - in 'y': GRCh38

sessionInfo() R version 3.5.3 (2019-03-11) Platform: x86_64-pc-linux-gnu (64-bit) Running under: CentOS Linux 7 (Core)

Matrix products: default BLAS/LAPACK: /hpc/packages/minerva-centos7/intel/parallelstudioxe2019/compilersandlibraries2019.0.117/linux/mkl/lib/intel64lin/libmklgf_lp64.so

locale: [1] LCCTYPE=enUS.UTF-8 LCNUMERIC=C [3] LCTIME=enUS.UTF-8 LCCOLLATE=enUS.UTF-8 [5] LCMONETARY=enUS.UTF-8 LCMESSAGES=enUS.UTF-8 [7] LCPAPER=enUS.UTF-8 LCNAME=C [9] LCADDRESS=C LCTELEPHONE=C [11] LCMEASUREMENT=enUS.UTF-8 LC_IDENTIFICATION=C

attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base

other attached packages: [1] TxDb.Hsapiens.UCSC.hg38.knownGene3.4.0 [2] gwascat2.14.0 [3] Homo.sapiens1.3.1 [4] TxDb.Hsapiens.UCSC.hg19.knownGene3.2.2 [5] org.Hs.eg.db3.7.0 [6] GO.db3.7.0 [7] OrganismDbi1.24.0 [8] GenomicFeatures1.34.8 [9] GenomicRanges1.34.0 [10] GenomeInfoDb1.18.2 [11] AnnotationDbi1.44.0 [12] IRanges2.16.0 [13] S4Vectors0.20.1 [14] Biobase2.42.0 [15] BiocGenerics_0.28.0

loaded via a namespace (and not attached): [1] backports1.1.4 AnnotationHub2.14.5 [3] Hmisc4.2-0 fastmatch1.1-0 [5] gQTLstats1.14.1 plyr1.8.4 [7] lazyeval0.2.2 splines3.5.3 [9] BatchJobs1.8 BiocParallel1.16.6 [11] ggplot23.2.0 digest0.6.20 [13] foreach1.4.4 ensembldb2.6.8 [15] htmltools0.3.6 magrittr1.5 [17] checkmate1.9.4 memoise1.1.0 [19] BBmisc1.11 BSgenome1.50.0 [21] cluster2.0.7-1 doParallel1.0.14 [23] limma3.38.3 Biostrings2.50.2 [25] matrixStats0.54.0 ggbio1.30.0 [27] prettyunits1.0.2 colorspace1.4-1 [29] blob1.2.0 xfun0.8 [31] dplyr0.8.3 crayon1.3.4 [33] RCurl1.95-4.12 jsonlite1.6 [35] graph1.60.0 ffbase0.12.7 [37] zeallot0.1.0 brew1.0-6 [39] survival2.43-3 sendmailR1.2-1 [41] VariantAnnotation1.28.13 iterators1.0.10 [43] glue1.3.1 gtable0.3.0 [45] zlibbioc1.28.0 XVector0.22.0 [47] DelayedArray0.8.0 scales1.0.0 [49] DBI1.0.0 GGally1.4.0 [51] Rcpp1.0.1 viridisLite0.3.0 [53] xtable1.8-4 progress1.2.2 [55] htmlTable1.13.1 foreign0.8-71 [57] bit1.1-14 Formula1.2-3 [59] erma0.14.0 htmlwidgets1.3 [61] httr1.4.0 RColorBrewer1.1-2 [63] acepack1.4.1 ff2.2-14 [65] pkgconfig2.0.2 reshape0.8.8 [67] XML3.98-1.20 Gviz1.26.5 [69] nnet7.3-12 tidyselect0.2.5 [71] rlang0.4.0 reshape21.4.3 [73] later0.8.0 sQTLseekeR2.1 [75] munsell0.5.0 tools3.5.3 [77] RSQLite2.1.1 stringr1.4.0 [79] yaml2.2.0 knitr1.23 [81] bit640.9-7 purrr0.3.2 [83] AnnotationFilter1.6.0 RBGL1.58.2 [85] nlme3.1-137 mime0.7 [87] biomaRt2.38.0 compiler3.5.3 [89] rstudioapi0.10 interactiveDisplayBase1.20.0 [91] beeswarm0.2.3 plotly4.9.0 [93] curl3.3 tibble2.1.3 [95] stringi1.4.3 GenomicFiles1.18.0 [97] lattice0.20-38 ProtGenerics1.14.0 [99] Matrix1.2-15 vctrs0.2.0 [101] pillar1.4.2 BiocManager1.30.4 [103] snpStats1.32.0 data.table1.12.2 [105] bitops1.0-6 httpuv1.5.1 [107] rtracklayer1.42.2 R62.4.0 [109] latticeExtra0.6-28 promises1.0.1 [111] gridExtra2.3 vipor0.4.5 [113] codetools0.2-16 dichromat2.0-0 [115] assertthat0.2.1 SummarizedExperiment1.12.0 [117] GenomicAlignments1.18.1 Rsamtools1.34.1 [119] GenomeInfoDbData1.2.0 mgcv1.8-27 [121] hms0.5.0 gQTLBase1.14.0 [123] grid3.5.3 rpart4.1-13 [125] tidyr0.8.3 biovizBase1.30.1 [127] shiny1.3.2 base64enc0.1-3 [129] ggbeeswarm_0.6.0

gwascat • 855 views
ADD COMMENT

Login before adding your answer.

Traffic: 652 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6