limma backgroundCorrect problem
1
0
Entering edit mode
Georg Otto ▴ 510
@georg-otto-956
Last seen 10.2 years ago
Hi, I am using limma for background correction and normalization of two-color arrays. I have encountered a problem that I do not quite understand: Using > RGb<-backgroundCorrect(RG, method="normexp", offset=50) I get the warning message: NaNs produced in: pnorm(q, mean, sd, lower.tail, log.p) However > which(is.nan(RGb$R) == TRUE) > which(is.nan(RGb$R) == TRUE) does not indicate NANs in the result. The numbers pruduced look strange as well: > RGb$G[1:5,] array1 array2 [1,] 2.481014e+79 2.361013e+74 [2,] 2.481014e+79 2.361013e+74 [3,] 2.481014e+79 2.361013e+74 [4,] 2.481014e+79 2.361013e+74 [5,] 2.481014e+79 2.361013e+74 array3 array4 [1,] 2099.87545 1.577257e+79 [2,] 53.75734 1.577257e+79 [3,] 118.30759 1.577257e+79 [4,] 63.07401 1.577257e+79 [5,] 339.25502 1.577257e+79 array5 array6 [1,] 1.153553e+85 1644.20247 [2,] 1.153553e+85 51.08563 [3,] 1.153553e+85 138.33239 [4,] 1.153553e+85 62.48045 [5,] 1.153553e+85 612.04439 My original foreground and background data however look decent (I think) > RG$G[1:5,] array1 array2 [1,] 1827.41975 1744.73457 [2,] 55.50345 55.98621 [3,] 110.92857 128.59155 [4,] 60.77931 62.81119 [5,] 81.86429 128.24161 array3 array4 [1,] 2102.72500 1573.95541 [2,] 55.60690 53.40936 [3,] 120.15714 96.55072 [4,] 66.92357 60.33103 [5,] 341.10458 262.14966 array5 array6 [1,] 2279.76687 1645.17073 [2,] 54.75172 52.96226 [3,] 130.19728 139.30065 [4,] 70.24615 64.44872 [5,] 709.73718 614.01266 > RG$Gb[1:5,] array1 array2 [1,] 44 45 [2,] 44 44 [3,] 44 45 [4,] 45 45 [5,] 44 45 array3 array4 [1,] 48 46 [2,] 47 47 [3,] 47 46 [4,] 49 46 [5,] 47 46 array5 array6 [1,] 47 46 [2,] 47 47 [3,] 46 46 [4,] 47 47 [5,] 46 47 Other subtraction methods (eg. "subtract") work well. I am running limma 2.4.4 on R 2.2.1 Any idea what is going wrong here? Best, Georg
Normalization limma Normalization limma • 839 views
ADD COMMENT
0
Entering edit mode
@qunyuan-zhang-1581
Last seen 10.2 years ago
Hi, We just finished an initial inverstigation (50000-gene Affymetrix, 15 cancered people and 10 normal people). 40 genes' RNA expressional levels were found significantly different between the two groups (by two sample t tests, p values corrected). We are now planning a second-stage experiment to validate this finding. We want to do power analysis and sample size calculation, especially want to know how many peoples should be included in the second-stage experiment. Besides the function Power.t.test(), is there any other functions in any packages availabe in bioConductor for this kind of experimantal design problems? Thanks, Qunyuan Zhang
ADD COMMENT

Login before adding your answer.

Traffic: 733 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6