deseq2: use blind=T or blind=F when find gene groups?
1
0
Entering edit mode
salamandra ▴ 20
@salamandra-12825
Last seen 3.0 years ago
Portugal

Hi,

I'm using reduced model to get genes that vary over different conditions and using degPaterns() to split those genes into groups according to their expression pattern (code bellow). What want to know is in this case, should we use parameter blind=T or blind=F in rlog() ?

Table <- data.frame(sampleName = sampleNames, fileName = sampleFiles, time = time, celltype = celltype, condition=condition)
Table
dds <- DESeqDataSetFromHTSeqCount(sampleTable = Table, design= ~ condition)
ddsHTSeq <- dds[rowSums(counts(dds)) > 1, ]
rld <- rlog(ddsHTSeq, blind=F)

dds_lrt <- DESeq(ddsHTSeq, test="LRT", reduced = ~ 1)

dds_res <- results(dds_lrt, alpha = value)

ddsdatres <- as.data.frame(dds_res)
ddsdatres <- ddsdatres[!is.na(ddsdatres$padj),]
res.sig <- ddsdatres[ddsdatres$padj < value,]
res.sig <- res.sig[order(res.sig$padj),]
rld_mat <- assay(rld)
cluster_rlog <-subset(rld_mat, row.names(rld_mat)%in%row.names(res.sig))
library('DEGreport')
rownames(Table) <- Table[,1]
meta <- as.data.frame(colData(dds_lrt))
clustersA <- degPatterns(cluster_rlog, metadata = meta, time = "condition", col=NULL)

png(paste0(outdir,cell,'.genegroupsA', pvalue,'.png'), res = 300, height = 20*300, width = 20*300, bg = "white")

print(clustersA$plot)

dev.off()

 

rlog transformation deseq2 • 845 views
ADD COMMENT
1
Entering edit mode
@mikelove
Last seen 11 hours ago
United States

I tend to use blind=FALSE,  because it avoids overestimating the dispersion.

ADD COMMENT

Login before adding your answer.

Traffic: 495 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6