Hi Everyone,
I am trying to highlight (by change of color) the top DEG in my volcano plot from differential expression analysis using the limma package. However, the codes that I am using, change all of the points, instead of just the highlighted points, in the plot to the indicated color. Can anymore tell me how to rework my command so only the highlighted genes are a different color? I know its probably something silly with my coding, but any help would be appreciated! I have listed the command codes and session info below.
Thanks!
-Deena
> library(oligo)
> library(limma)
> getwd()
[1] "/Users/dmaurer/Desktop/Butterfield Lab Data/Microarray 09-021 Patient Raw Files/CEL files - Patient #/Raw Files"
> Celfiles<-list.celfiles("/Users/dmaurer/Desktop/Butterfield Lab Data/Microarray 09-021 Patient Raw Files/CEL files - Patient #/Raw Files")
> Rawdata<-read.celfiles(Celfiles)
Loading required package: pd.hugene.2.0.st
Loading required package: RSQLite
Loading required package: DBI
Platform design info loaded.
Reading in : iDC_10.CEL
Reading in : iDC_11.CEL
Reading in : iDC_12.CEL
Reading in : iDC_13.CEL
Reading in : iDC_14.CEL
Reading in : iDC_15.CEL
Reading in : iDC_16.CEL
Reading in : iDC_17.CEL
Reading in : iDC_18.CEL
Reading in : iDC_19.CEL
Reading in : iDC_2.CEL
Reading in : iDC_20.CEL
Reading in : iDC_21.CEL
Reading in : iDC_22.CEL
Reading in : iDC_23.CEL
Reading in : iDC_24.CEL
Reading in : iDC_25.CEL
Reading in : iDC_26.CEL
Reading in : iDC_27.CEL
Reading in : iDC_28.CEL
Reading in : iDC_29.CEL
Reading in : iDC_3.CEL
Reading in : iDC_30.CEL
Reading in : iDC_31.CEL
Reading in : iDC_32.CEL
Reading in : iDC_33.CEL
Reading in : iDC_34.CEL
Reading in : iDC_35.CEL
Reading in : iDC_4.CEL
Reading in : iDC_5.CEL
Reading in : iDC_6.CEL
Reading in : iDC_7.CEL
Reading in : iDC_8.CEL
Reading in : iDC_9.CEL
Reading in : mDC_10.CEL
Reading in : mDC_11.CEL
Reading in : mDC_12.CEL
Reading in : mDC_13.CEL
Reading in : mDC_14.CEL
Reading in : mDC_15.CEL
Reading in : mDC_16.CEL
Reading in : mDC_17.CEL
Reading in : mDC_18.CEL
Reading in : mDC_19.CEL
Reading in : mDC_2.CEL
Reading in : mDC_20.CEL
Reading in : mDC_21.CEL
Reading in : mDC_22.CEL
Reading in : mDC_23.CEL
Reading in : mDC_24.CEL
Reading in : mDC_25.CEL
Reading in : mDC_26.CEL
Reading in : mDC_27.CEL
Reading in : mDC_28.CEL
Reading in : mDC_29.CEL
Reading in : mDC_3.CEL
Reading in : mDC_30.CEL
Reading in : mDC_31.CEL
Reading in : mDC_32.CEL
Reading in : mDC_33.CEL
Reading in : mDC_34.CEL
Reading in : mDC_35.CEL
Reading in : mDC_4.CEL
Reading in : mDC_5.CEL
Reading in : mDC_6.CEL
Reading in : mDC_7.CEL
Reading in : mDC_8.CEL
Reading in : mDC_9.CEL
Reading in : TMM2_10.CEL
Reading in : TMM2_11.CEL
Reading in : TMM2_12.CEL
Reading in : TMM2_13.CEL
Reading in : TMM2_14.CEL
Reading in : TMM2_15.CEL
Reading in : TMM2_16.CEL
Reading in : TMM2_17.CEL
Reading in : TMM2_18.CEL
Reading in : TMM2_19.CEL
Reading in : TMM2_2.CEL
Reading in : TMM2_20_.CEL
Reading in : TMM2_21.CEL
Reading in : TMM2_22.CEL
Reading in : TMM2_23.CEL
Reading in : TMM2_24.CEL
Reading in : TMM2_25.CEL
Reading in : TMM2_26.CEL
Reading in : TMM2_27.CEL
Reading in : TMM2_28.CEL
Reading in : TMM2_29.CEL
Reading in : TMM2_3.CEL
Reading in : TMM2_30.CEL
Reading in : TMM2_31.CEL
Reading in : TMM2_32.CEL
Reading in : TMM2_33.CEL
Reading in : TMM2_34.CEL
Reading in : TMM2_35.CEL
Reading in : TMM2_4.CEL
Reading in : TMM2_5.CEL
Reading in : TMM2_6.CEL
Reading in : TMM2_7.CEL
Reading in : TMM2_8.CEL
Reading in : TMM2_9.CEL
> eset<-rma(Rawdata)
Background correcting
Normalizing
Calculating Expression
> sample <-factor(rep(c("iDC","mDC","TMM2"), each =34))
> design.mat <-model.matrix (~0 +sample)
> colnames(design.mat) <- levels(sample)
> fit <- lmFit(eset, design.mat)
> contrast.mat <- makeContrasts(Diff.1 = mDC-iDC,Diff.2 = TMM2-iDC, Diff.3=TMM2-mDC, levels=design.mat)
>fit2 <- contrasts.fit(fit, contrast.mat)
> fit2 <- eBayes(fit2)
>volcanoplot(fit2,coef="Diff.1",highlight=10,names=fit$genes$NAME, col="red",main="mDC vs iDC")
* This command results in all the points being red, not just the highlighted ones.
Session Info -
R version 3.4.4 (2018-03-15)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets methods base
other attached packages:
[1] pd.hugene.2.0.st_3.14.1 DBI_1.0.0 RSQLite_2.1.1 limma_3.34.9 oligo_1.42.0 Biostrings_2.46.0 XVector_0.18.0
[8] IRanges_2.12.0 S4Vectors_0.16.0 Biobase_2.38.0 oligoClasses_1.40.0 BiocGenerics_0.24.0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 compiler_3.4.4 BiocInstaller_1.28.0 GenomeInfoDb_1.14.0 bitops_1.0-6 iterators_1.0.10 tools_3.4.4
[8] zlibbioc_1.24.0 digest_0.6.17 bit_1.1-14 memoise_1.1.0 preprocessCore_1.40.0 lattice_0.20-35 ff_2.2-14
[15] pkgconfig_2.0.2 Matrix_1.2-14 foreach_1.4.4 DelayedArray_0.4.1 GenomeInfoDbData_1.0.0 affxparser_1.50.0 bit64_0.9-7
[22] grid_3.4.4 blob_1.1.1 codetools_0.2-15 matrixStats_0.54.0 GenomicRanges_1.30.3 splines_3.4.4 SummarizedExperiment_1.8.1
[29] RCurl_1.95-4.11 affyio_1.48.0
You can also try out EnhancedVolcano (Bioconductor): https://github.com/kevinblighe/EnhancedVolcano
To shade any gene or group of genes by any colour that you want, take a look at the end of the vignette. You can also label any specific gene or genes.
Kevin
There's no need to print out the whole design matrix in this case, so I took it out to make your question a bit shorter and easier to read.