Fwd:decideTests nestedF
0
0
Entering edit mode
@danielamarconiliberoit-857
Last seen 10.2 years ago
Hi, I'm using limma to analyze an Operon Oligo data set. I would try to use in down stream part of the analysis a nestedF approach. The problem is that using > results<-decideTest(fit2,method="nestedF",adjust.method="fdr") I had this error message Errore: nestedF method can't handle NA p-values Can I use instead classifyTestsF? What is the difference? I will have with this function a way to obtain adjusted p.values Or otherwise what is the best solution to avoid NA P.values? Below, the R code of my analysis:what is wrong??? >Targets<-readTargets() >Targets file.name Cy5 Cy3 1 013.gpr nsM linf B 2 015.gpr UM linf B 3 018.gpr UM linf B 4 021.gpr UM linf B 5 022.gpr UM linf B 6 032.gpr nsM linf B 7 039.gpr UM linf B 8 047.gpr UM linf B 9 049.gpr nsM linf B 10 067.gpr sM linf B 11 068.gpr nsM linf B 12 079.gpr sM linf B 13 080.gpr nsM linf B 14 089.gpr linf B 15 098.gpr sM linf B 16 107.gpr sM linf B 17 119.gpr UM linf B 18 127.gpr sM linf B 19 128.gpr UM linf B 20 129.gpr nsM linf B 21 149.gpr UM linf B 22 164.gpr nsM linf B 23 181.gpr sM linf B 24 185.gpr sM linf B 25 186.gpr UM linf B 26 188.gpr nsM linf B 27 191.gpr UM linf B 28 195.gpr UM linf B 29 245.gpr UM linf B 30 257.gpr sM linf B 31 258.gpr nsM linf B 32 286.gpr nsM linf B 33 287.gpr sM linf B 34 288.gpr nsM linf B 35 304.gpr nsM linf B 36 305.gpr sM linf B 37 313.gpr nsM linf B 38 316.gpr sM linf B 39 318.gpr sM linf B 40 320.gpr sM linf B 41 323.gpr nsM linf B 42 325.gpr sM linf B 43 326.gpr nsM linf B 44 328.gpr UM linf B 45 329.gpr sM linf B 46 331.gpr UM linf B 47 332.gpr sM linf B 48 334.gpr sM linf B 49 337.gpr sM linf B 50 338.gpr sM linf B 51 340.gpr sM linf B 52 344.gpr UM linf B 53 345.gpr UM linf B 54 346.gpr nsM linf B 55 354.gpr UM linf B 56 369.gpr nsM linf B 57 378.gpr nsM linf B 58 382.gpr nsM linf B >RG<-read.maimages(Targets$file.name,source="genepix",wt.fun=wtflags(0 .1)) >MAmov<-normalizeWithinArrays(RG,bc.method="movingmin") >MAmovQ<-normalizeBetweenArrays(MA,method="quantile") >group<-factor(c("nsM",rep("UM",7),"nsM","sM","nsM","sM","nsM","NC",re p("sM",2),"UM","sM","UM","nsM","UM","nsM", rep("sM",2),"UM","nsM",rep("UM",3),"sM",rep("nsM",2),"sM",rep("nsM",2) ,"sM","nsM",rep("sM",3),"nsM","sM","nsM", "UM","sM","UM",rep("sM",5),rep("UM",2),"nsM","UM",rep("nsM",3)),levels =c("nsM","UM","sM","NC")) >design<-model.matrix(~0+group) >colnames(design)<-c("nsM","UM","sM","NC") >fit<-lmFit(MAmovQ,design,weights=MAmovQ$weights,ndups=1) >cont.matrix<-makeContrasts(UM-(nsM+sM),UM-nsM,UM-sM,nsM- sM,levels=design) > cont.matrix UM - (nsM + sM) UM - nsM UM - sM nsM - sM nsM -1 -1 0 1 UM 1 1 1 0 sM -1 0 -1 -1 NC 0 0 0 0 >fit2<-contrasts.fit(fit,cont.matrix) >results<-decideTests(fit2,method="nestedF",adjust.method="fdr",p.valu e=0.05)
limma oligo limma oligo • 727 views
ADD COMMENT

Login before adding your answer.

Traffic: 487 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6