I am using Hisat2 and Stringtie for alignment and assembly of human samples. When I run ballgown on my data, I am getting 29 genes that are significantly differentially expressed, however when I use DESeq2 for the analysis, I get 930 genes that are significantly different (q<0.05). I also compared the top 100 genes sorted by q value for both ballgown and DESeq2, and only 17 genes are the same between the two.
My question is, why am I getting so few genes showing as significantly different with ballgown? If it were a problem of multiple sampling, shouldn't I have more overlap between DESeq2 and ballgown when they are sorted by q-value?
In ballgown, I am using a coverage cutoff of 10 to filter my data before running the stat test. I've tried other values and methods for filtering my data in ballgown, and this is giving me the best result so far.
Thanks for your help!
Same problem with my data. Huge difference between DEG reported by Ballgown and DESeq2. I have now shifted from Hisat2>Stringtie>Ballgown to using Hisat2>FeatureCounts>DESeq2. Is this combination good?
hi ag1805x, have hisat2 and stringtie working, trying Ballgown, and having issue with getting DE expression as I have for years, with cuffdiff. Now exploring other ways, and looks like DEseq2 is the best way to go or go back to cuffdiff. For now I would like to try your suggestion. What is Feature Counts and how to use. I have the hisat2 data. Thanks steve harris