keep getting this error "number of rows is not the same across batches" even though my 2 matrices have the same row number
1
0
Entering edit mode
sara.nejat • 0
@saranejat-16446
Last seen 6.3 years ago

I have 2 scRNA seq datasets that I'm trying to merge and correct for batch effect by mnnCorrect. I'm generally using Seurat for my analysis but I've used scran/scater for the normalization step. My original data sets do not have the same number of genes but I've subsetted the data based on highly variable genes shared between the two dataset ( 698 genes). I still get the error indicating that the number of rows is not the same across batches. Any idea why? 

Here's my code... 

Cont_MF <- Read10X(data.dir = "/Users/snejat/Documents/Sarah_scData/Epelman_Sarah_cont/mm10_TDTomato")

MI_MF <- Read10X(data.dir = "/Users/snejat/Documents/Sarah_scData/Epelman_Sarah_M1_MFS/mm10_TDTomato")

dim(MI_MF)  # 28001  4697

dim(Cont_MF) #28001  1806

Cont_MFs <- CreateSeuratObject(raw.data = Cont_MF, min.cells = 3, min.genes = 200, 

                            project = "Cont_MFs")

MI_MFs <- CreateSeuratObject(raw.data = MI_MF, min.cells = 3, min.genes = 200, 

                       project = "MI_MFs")

 

mito.genes <- grep(pattern = "^mt-", x = rownames(x = Cont_MFs@data), value = TRUE)

percent.mito <- Matrix::colSums(Cont_MFs@raw.data[mito.genes, ])/Matrix::colSums(Cont_MFs@raw.data)

mito.genes <- grep(pattern = "^mt-", x = rownames(x = MI_MFs@data), value = TRUE)

percent.mito <- Matrix::colSums(MI_MFs@raw.data[mito.genes, ])/Matrix::colSums(MI_MFs@raw.data)

length(mito.genes) #13

 

Cont_MFs <- AddMetaData(object = Cont_MFs, metadata = percent.mito, col.name = "percent.mito")

MI_MFs <- AddMetaData(object = MI_MFs, metadata = percent.mito, col.name = "percent.mito")

 

Cont_MFs2 <- FilterCells(object = Cont_MFs, subset.names = c("nGene", "percent.mito"), 

                     low.thresholds = c(1100, -Inf), high.thresholds = c(5500, 0.1))

 

MI_MFs2 <- FilterCells(object = MI_MFs, subset.names = c("nGene", "percent.mito"), 

                     low.thresholds = c(1000, -Inf), high.thresholds = c(4800, 0.1))

 

dim(Cont_MFs2@data) # 14263  1730

dim(MI_MFs2@data) #14784  4626

 

Cont_MFs2_meta <-Cont_MFs2@meta.data

MI_MFs2_meta <-MI_MFs2@meta.data

Cont_MFs2 <- as.matrix(Cont_MFs2@data)

MI_MFs2 <- as.matrix(MI_MFs2@data)

Cont_sce <- SingleCellExperiment(assays = list(counts = Cont_MFs2))

MI_sce <- SingleCellExperiment(assays = list(counts = MI_MFs2))

 

#compute sum factors for normalization

Cont_sce <- scran::computeSumFactors(Cont_sce)

MI_sce <- scran::computeSumFactors(MI_sce)

#normalize data - uses the above sum factors

Cont_sce <- normalize(Cont_sce)

MI_sce <- normalize(MI_sce)

 

Cont_sce_norm <- as.matrix(exprs(Cont_sce))

MI_sce_norm <- as.matrix(exprs(MI_sce))

 

#reverse the log2 + 1

Cont_norm_nolog <- (2^(Cont_sce_norm)) -1

MI_norm_nolog <- (2^(MI_sce_norm)) -1

 

#natural log + 1

Cont_norm_ln <- log(Cont_norm_nolog + 1)

MI_norm_ln <- log(MI_norm_nolog + 1)

 

#load your original data into seurat

Cont_MFs2 <- CreateSeuratObject(raw.data = Cont_MFs2, min.cells = 3, min.genes = 300, project = "Cont_MI", meta.data = Cont_MFs2_meta)

MI_MFs2 <- CreateSeuratObject(raw.data = MI_MFs2, min.cells = 3, min.genes = 300, project = "MI_MI", meta.data = MI_MFs2_meta)

#load your newly normalized (natural log + 1) into the seurat.raw@data slot

Cont_MFs2@data <- Cont_norm_ln

MI_MFs2@data <- MI_norm_ln

 

Cont_MFs2 <- FindVariableGenes(object = Cont_MFs2, mean.function = ExpMean, dispersion.function = LogVMR, do.plot = TRUE, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)

length( Cont_MFs2@var.genes)

[1] 1165

MI_MFs2 <- FindVariableGenes(object = MI_MFs2, mean.function = ExpMean, dispersion.function = LogVMR, do.plot = TRUE, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)

length(MI_MFs2@var.genes)

[1] 1020

 

common_hvgs <- intersect(Cont_MFs2@var.genes,MI_MFs2@var.genes)

length(common_hvgs) # 698

 

Cont_MFs2_matrix <- as.matrix(Cont_MFs2@data)

MI_MFs2_matrix <- as.matrix(MI_MFs2@data)

 

Cont_MFs2_matrix_sample <- as.matrix(Cont_MFs2_matrix [common_hvgs, ])

MI_MFs2_matrix_sample <- as.matrix(MI_MFs2_matrix [common_hvgs, ])

dim(Cont_MFs2_matrix_sample)

[1]  698 1730

dim(MI_MFs2_matrix_sample)

[1]  698 4626

 

mnn_correction <- mnnCorrect(Cont_MFs2_matrix_sample , MI_MFs2_matrix_sample, k=20, sigma=1, cos.norm.in=FALSE, cos.norm.out=FALSE, subset.row=common_hvgs, var.adj = TRUE )

Error in mnnCorrect(Cont_MFs2_matrix_sample, MI_MFs2_matrix_sample, k = 20,  :
  number of rows is not the same across batches

 

Here's the session info

> sessionInfo()
R version 3.4.4 (2018-03-15)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_CA.UTF-8/en_CA.UTF-8/en_CA.UTF-8/C/en_CA.UTF-8/en_CA.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets
[8] methods   base

other attached packages:
 [1] BiocInstaller_1.28.0       Rtsne_0.13
 [3] scales_0.5.0               limma_3.34.9
 [5] scater_1.6.3               scran_1.6.9
 [7] SingleCellExperiment_1.0.0 SummarizedExperiment_1.8.1
 [9] DelayedArray_0.4.1         matrixStats_0.53.1
[11] Biobase_2.38.0             GenomicRanges_1.30.3
[13] GenomeInfoDb_1.14.0        IRanges_2.12.0
[15] S4Vectors_0.16.0           BiocGenerics_0.24.0
[17] BiocParallel_1.12.0        dplyr_0.7.6
[19] Seurat_2.3.3               Matrix_1.2-14
[21] cowplot_0.9.2              ggplot2_3.0.0

loaded via a namespace (and not attached):
  [1] shinydashboard_0.7.0   R.utils_2.6.0          tidyselect_0.2.4
  [4] RSQLite_2.1.1          AnnotationDbi_1.40.0   htmlwidgets_1.2
  [7] grid_3.4.4             trimcluster_0.1-2      ranger_0.10.1
 [10] munsell_0.5.0          codetools_0.2-15       ica_1.0-2
 [13] DT_0.4                 statmod_1.4.30         withr_2.1.2
 [16] colorspace_1.3-2       knitr_1.20             rstudioapi_0.7
 [19] geometry_0.3-6         ROCR_1.0-7             robustbase_0.93-1
 [22] dtw_1.20-1             dimRed_0.1.0           lars_1.2
 [25] tximport_1.6.0         GenomeInfoDbData_1.0.0 mnormt_1.5-5
 [28] bit64_0.9-7            rhdf5_2.22.0           ipred_0.9-6
 [31] diptest_0.75-7         R6_2.2.2               ggbeeswarm_0.6.0
 [34] VGAM_1.0-5             locfit_1.5-9.1         flexmix_2.3-14
 [37] DRR_0.0.3              bitops_1.0-6           assertthat_0.2.0
 [40] SDMTools_1.1-221       nnet_7.3-12            beeswarm_0.2.3
 [43] gtable_0.2.0           ddalpha_1.3.4          timeDate_3043.102
 [46] rlang_0.2.1            CVST_0.2-2             scatterplot3d_0.3-41
 [49] RcppRoll_0.3.0         splines_3.4.4          lazyeval_0.2.1
 [52] ModelMetrics_1.1.0     acepack_1.4.1          broom_0.4.5
 [55] checkmate_1.8.5        reshape2_1.4.3         abind_1.4-5
 [58] backports_1.1.2        httpuv_1.4.4.2         Hmisc_4.1-1
 [61] caret_6.0-80           tools_3.4.4            lava_1.6.2
 [64] psych_1.8.4            gplots_3.0.1           RColorBrewer_1.1-2
 [67] proxy_0.4-22           dynamicTreeCut_1.63-1  ggridges_0.5.0
 [70] Rcpp_0.12.17           plyr_1.8.4             base64enc_0.1-3
 [73] progress_1.2.0         zlibbioc_1.24.0        purrr_0.2.5
 [76] RCurl_1.95-4.10        prettyunits_1.0.2      rpart_4.1-13
 [79] pbapply_1.3-4          viridis_0.5.1          zoo_1.8-2
 [82] sfsmisc_1.1-2          cluster_2.0.7-1        magrittr_1.5
 [85] data.table_1.11.4      lmtest_0.9-36          RANN_2.5.1
 [88] mvtnorm_1.0-8          fitdistrplus_1.0-9     mime_0.5
 [91] xtable_1.8-2           XML_3.98-1.11          mclust_5.4.1
 [94] gridExtra_2.3          compiler_3.4.4         biomaRt_2.34.2
 [97] tibble_1.4.2           KernSmooth_2.23-15     R.oo_1.22.0
[100] htmltools_0.3.6        segmented_0.5-3.0      Formula_1.2-3
[103] snow_0.4-2             tidyr_0.8.1            tclust_1.4-1
[106] lubridate_1.7.4        DBI_1.0.0              diffusionMap_1.1-0
[109] magic_1.5-8            MASS_7.3-50            fpc_2.1-11
[112] R.methodsS3_1.7.1      gdata_2.18.0           metap_0.9
[115] bindr_0.1.1            gower_0.1.2            igraph_1.2.1
[118] pkgconfig_2.0.1        sn_1.5-2               numDeriv_2016.8-1
[121] foreign_0.8-70         recipes_0.1.3          foreach_1.4.4
[124] vipor_0.4.5            XVector_0.18.0         prodlim_2018.04.18
[127] stringr_1.3.1          digest_0.6.15          tsne_0.1-3
[130] htmlTable_1.12         edgeR_3.20.9           kernlab_0.9-26
[133] shiny_1.1.0            gtools_3.8.1           modeltools_0.2-21
[136] rjson_0.2.20           nlme_3.1-137           bindrcpp_0.2.2
[139] viridisLite_0.3.0      pillar_1.2.3           lattice_0.20-35
[142] DEoptimR_1.0-8         survival_2.42-4        glue_1.2.0
[145] FNN_1.1                png_0.1-7              prabclus_2.2-6
[148] iterators_1.0.9        bit_1.1-14             class_7.3-14
[151] stringi_1.2.3          mixtools_1.1.0         blob_1.1.1
[154] doSNOW_1.0.16          latticeExtra_0.6-28    caTools_1.17.1
[157] memoise_1.1.0          irlba_2.3.2            ape_5.1

mnncorrect batch effect scran • 2.7k views
ADD COMMENT
1
Entering edit mode

You're lucky that the support site is my homepage, otherwise I would have never seen this post. For future reference, please tag the post with the package name, otherwise the package maintainers don't get notified.

As for your actual problem, please read the posting guide, and provide some code and your session information.

P.S. When adding new information, edit your existing post. Do not "add an answer". Unless you solved your own problem.

ADD REPLY
0
Entering edit mode
Aaron Lun ★ 28k
@alun
Last seen 28 minutes ago
The city by the bay

There are several points here.

Firstly, you should be using the latest version of scran (1.8.3) and, more generally, of Bioconductor. The error you talk about may have already been fixed in the latest version. Even if there is still a bug in the latest version, you will have to upgrade anyway to get the bugfix, so you might as well do it now.

If the bug persists upon upgrading the packages; the error that you've described should be impossible based on an inspection of the code. You'll have to make a minimum working example that reproduces the error (e.g., based on some simulated data) in order for me to investigate it.

Secondly, if you're going to upgrade, you might want to consider using the development version of scran:

https://www.bioconductor.org/developers/how-to/useDevel/

... which contains a much-improved fastMNN function. This is a faster and more robust version of the MNN correction algorithm, see https://github.com/MarioniLab/FurtherMNN2018 for theoretical details and performance comparisons. Also see http://bioconductor.org/packages/devel/workflows/vignettes/simpleSingleCell/inst/doc/work-5-mnn.html for how to use it.

Thirdly; I can't help but feel you're making life more difficult for yourself by manually converting between SingleCellExperiment and Seurat objects. There are a plethora of HVG-calling functions in scran - trendVar and decomposeVar, technicalCV2, improvedCV2, DM. If you want negative binomial dispersions, you should also be able to use SingleCellExperiment objects in DESeq2, or use convertTo to obtain a DGEList for use in edgeR, and then use the residuals of the mean-dispersion trend for identifying highly variable genes. I'd be surprised if none of these strategies were able to serve your needs.

ADD COMMENT

Login before adding your answer.

Traffic: 585 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6