DESeq2 significative fold change when both groups have no reads
1
0
Entering edit mode
@charles-joly-beauparlant-4777
Last seen 5.6 years ago
Canada

Hello,

I’m observing an unexpected behavior from DESeq2. I obtain a significant padj when I compare the transcripts from 2 groups with 0 reads in all the replicates.

> as.data.frame(res_F3POPS_vs_F3_CTRL) %>% rownames_to_column("id") %>% filter(id == "ENSRNOT00000088387")
                  id baseMean log2FoldChange    lfcSE      stat
1 ENSRNOT00000088387 381.6177       -25.8996 4.694172 -5.517395
            pvalue            padj
1 0.00000003440612 0.0000003680966

> as.data.frame(txi$counts) %>%
        rownames_to_column("id") %>%
        filter(id == "ENSRNOT00000088387")
                  id control_1 control_2 control_3 F3_CTRL_1 F3_CTRL_2
1 ENSRNOT00000088387  573.3939  1075.113  287.7978         0         0
  F3_CTRL_3 F3_FA_1 F3_FA_2 F3_FA_3 F3_POPs_1 F3_POPs_2 F3_POPs_3 F3_POPsFA_1
1         0       0       0       0         0         0         0           0
  F3_POPsFA_2 F3_POPsFA_3 F4_CTRL_1 F4_CTRL_3 F4_FA_1 F4_FA_2 F4_FA_3 F4_POPs_1
1           0           0         2         0       0       0       0         0
  F4_POPs_2 F4_POPs_3 F4_POPsFA_1 F4_POPsFA_2 F4_POPsFA_3    FA_1     FA_2
1         0         0           0           0           0 3250.33 715.4023
      FA_3 FA_PoPs_1 FA_PoPs_2 FA_PoPs_3   PoPs_1        PoPs_2
1 3177.454   881.573  1323.833   1859.41 849.9267 0.00003033968
            PoPs_3
1 0.00000002652117

I used the following design:

> design %>% as.data.frame
       group      sample
1    F3_CTRL   F3_CTRL_1
2    F3_CTRL   F3_CTRL_2
3    F3_CTRL   F3_CTRL_3
4      F3_FA     F3_FA_1
5      F3_FA     F3_FA_2
6      F3_FA     F3_FA_3
7  F3_POPsFA F3_POPsFA_1
8  F3_POPsFA F3_POPsFA_2
9  F3_POPsFA F3_POPsFA_3
10   F3_POPs   F3_POPs_1
11   F3_POPs   F3_POPs_2
12   F3_POPs   F3_POPs_3
13   F4_CTRL   F4_CTRL_1
14   F4_CTRL   F4_CTRL_3
15     F4_FA     F4_FA_1
16     F4_FA     F4_FA_2
17     F4_FA     F4_FA_3
18 F4_POPsFA F4_POPsFA_1
19 F4_POPsFA F4_POPsFA_2
20 F4_POPsFA F4_POPsFA_3
21   F4_POPs   F4_POPs_1
22   F4_POPs   F4_POPs_2
23   F4_POPs   F4_POPs_3
24     F1_FA        FA_1
25     F1_FA        FA_2
26     F1_FA        FA_3
27 F1_POPsFA   FA_PoPs_1
28 F1_POPsFA   FA_PoPs_2
29 F1_POPsFA   FA_PoPs_3
30   F1_POPs      PoPs_1
31   F1_POPs      PoPs_2
32   F1_POPs      PoPs_3
33   F1_CTRL   control_1
34   F1_CTRL   control_2
35   F1_CTRL   control_3

And I produced the results with this code:

dds <- DESeqDataSetFromTximport(txi, design, ~ group)
dds <- dds[rowSums(counts(dds)) >= 2]
dds <- DESeq(dds)
res_F3POPS_vs_F3_CTRL <- results(dds, contrast = c("group", "F3_POPs", "F3_CTRL"))

I also checked in the dds object to make sure the samples were correctly paired with the design:

> dds$sample
 [1] "F3_CTRL_1"   "F3_CTRL_2"   "F3_CTRL_3"   "F3_FA_1"     "F3_FA_2"
 [6] "F3_FA_3"     "F3_POPsFA_1" "F3_POPsFA_2" "F3_POPsFA_3" "F3_POPs_1"
[11] "F3_POPs_2"   "F3_POPs_3"   "F4_CTRL_1"   "F4_CTRL_3"   "F4_FA_1"
[16] "F4_FA_2"     "F4_FA_3"     "F4_POPsFA_1" "F4_POPsFA_2" "F4_POPsFA_3"
[21] "F4_POPs_1"   "F4_POPs_2"   "F4_POPs_3"   "FA_1"        "FA_2"
[26] "FA_3"        "FA_PoPs_1"   "FA_PoPs_2"   "FA_PoPs_3"   "PoPs_1"
[31] "PoPs_2"      "PoPs_3"      "control_1"   "control_2"   "control_3"
> dds$group
 [1] F3_CTRL   F3_CTRL   F3_CTRL   F3_FA     F3_FA     F3_FA     F3_POPsFA
 [8] F3_POPsFA F3_POPsFA F3_POPs   F3_POPs   F3_POPs   F4_CTRL   F4_CTRL
[15] F4_FA     F4_FA     F4_FA     F4_POPsFA F4_POPsFA F4_POPsFA F4_POPs
[22] F4_POPs   F4_POPs   F1_FA     F1_FA     F1_FA     F1_POPsFA F1_POPsFA
[29] F1_POPsFA F1_POPs   F1_POPs   F1_POPs   F1_CTRL   F1_CTRL   F1_CTRL
12 Levels: F1_CTRL F1_FA F1_POPs F1_POPsFA F3_CTRL F3_FA F3_POPs ... F4_POPsFA

Everything appears to be OK.

I’m probably missing something, but I don’t know what.

Could you help me with this problem?

Thank you very much!
Charles.

> sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: macOS High Sierra 10.13.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_CA.UTF-8/en_CA.UTF-8/en_CA.UTF-8/C/en_CA.UTF-8/en_CA.UTF-8

attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] bindrcpp_0.2.2 DESeq2_1.20.0
[3] SummarizedExperiment_1.10.1 DelayedArray_0.6.1
[5] BiocParallel_1.14.1 matrixStats_0.53.1
[7] Biobase_2.40.0 GenomicRanges_1.32.3
[9] GenomeInfoDb_1.16.0 IRanges_2.14.10
[11] S4Vectors_0.18.3 BiocGenerics_0.26.0
[13] forcats_0.3.0 stringr_1.3.1
[15] dplyr_0.7.5 purrr_0.2.5
[17] readr_1.1.1 tidyr_0.8.1
[19] tibble_1.4.2 ggplot2_2.2.1
[21] tidyverse_1.2.1 rnaseq_0.0.27

loaded via a namespace (and not attached):
[1] nlme_3.1-137 bitops_1.0-6 lubridate_1.7.4
[4] bit64_0.9-7 httr_1.3.1 RColorBrewer_1.1-2
[7] tools_3.5.0 backports_1.1.2 utf8_1.1.4
[10] R6_2.2.2 rpart_4.1-13 Hmisc_4.1-1
[13] DBI_1.0.0 lazyeval_0.2.1 colorspace_1.3-2
[16] nnet_7.3-12 tidyselect_0.2.4 gridExtra_2.3
[19] mnormt_1.5-5 bit_1.1-14 compiler_3.5.0
[22] cli_1.0.0 rvest_0.3.2 htmlTable_1.12
[25] flashClust_1.01-2 xml2_1.2.0 scales_0.5.0
[28] checkmate_1.8.5 psych_1.8.4 genefilter_1.62.0
[31] digest_0.6.15 foreign_0.8-70 XVector_0.20.0
[34] base64enc_0.1-3 pkgconfig_2.0.1 htmltools_0.3.6
[37] FactoMineR_1.41 readxl_1.1.0 htmlwidgets_1.2
[40] rlang_0.2.1 rstudioapi_0.7 RSQLite_2.1.1
[43] bindr_0.1.1 jsonlite_1.5 acepack_1.4.1
[46] RCurl_1.95-4.10 magrittr_1.5 GenomeInfoDbData_1.1.0
[49] Formula_1.2-3 leaps_3.0 Matrix_1.2-14
[52] Rcpp_0.12.17 munsell_0.5.0 scatterplot3d_0.3-41
[55] stringi_1.2.3 MASS_7.3-50 zlibbioc_1.26.0
[58] plyr_1.8.4 grid_3.5.0 blob_1.1.1
[61] ggrepel_0.8.0 crayon_1.3.4 lattice_0.20-35
[64] haven_1.1.1 splines_3.5.0 annotate_1.58.0
[67] hms_0.4.2 locfit_1.5-9.1 knitr_1.20
[70] pillar_1.2.3 geneplotter_1.58.0 reshape2_1.4.3
[73] XML_3.98-1.11 glue_1.2.0 latticeExtra_0.6-28
[76] modelr_0.1.2 data.table_1.11.4 cellranger_1.1.0
[79] gtable_0.2.0 assertthat_0.2.0 xtable_1.8-2
[82] broom_0.4.4 survival_2.42-3 AnnotationDbi_1.42.1
[85] memoise_1.1.0 tximport_1.8.0 cluster_2.0.7

deseq2 • 747 views
ADD COMMENT
1
Entering edit mode
@mikelove
Last seen 12 hours ago
United States

Why are F1 control the first three samples in the count table but the last three sample in the colData?

ADD COMMENT
0
Entering edit mode

OK, I re-launched after changing the order of colData and it seems to correct the problem. Thank you for your input.

Charles.

ADD REPLY

Login before adding your answer.

Traffic: 545 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6