Hi all,
I'm stuck in a strange result while doing DESeq2 tutorial with tximport and tximportData.
The script I used is below:
library("DESeq2")
library("tximport")
library("tximportData")
dir <- system.file("extdata", package = "tximportData")
list.files(dir)
samples <- read.table(file.path(dir, "samples.txt"), header = TRUE)
files <- file.path(dir, "rsem", samples$run, paste0(samples$run, ".genes.results.gz"))
names(files) <- paste0("sample", 1:6)
txi.rsem <- tximport(files, type = "rsem", txIn = FALSE, txOut = FALSE)
txi.rsem$length[txi.rsem$length == 0] <- 1
sampleTable <- data.frame(condition = factor(rep(c("A", "B"), each = 3)))
rownames(sampleTable) <- colnames(txi.rsem$counts)
dds <- DESeqDataSetFromTximport(txi.rsem, sampleTable, ~ condition)
dds <- DESeq(dds)
res <- results(dds)
resOrdered <- res[order(res$padj),]
summary(res)
And the result is:
## out of 29939 with nonzero total read count ## adjusted p-value < 0.1 ## LFC > 0 (up) : 3, 0.01% ## LFC < 0 (down) : 0, 0% ## outliers [1] : 82, 0.27% ## low counts [2] : 0, 0% ## (mean count < 0) ## [1] see 'cooksCutoff' argument of ?results ## [2] see 'independentFiltering' argument of ?results
What I want is :
##
## out of 9921 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up) : 518, 5.2%
## LFC < 0 (down) : 536, 5.4%
## outliers [1] : 1, 0.01%
## low counts [2] : 1539, 16%
## (mean count < 6)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
> sessionInfo()
R version 3.5.0 (2018-04-23) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows >= 8 x64 (build 9200) Matrix products: default locale: [1] LC_COLLATE=Korean_Korea.949 LC_CTYPE=Korean_Korea.949 [3] LC_MONETARY=Korean_Korea.949 LC_NUMERIC=C [5] LC_TIME=Korean_Korea.949 attached base packages: [1] parallel stats4 stats graphics grDevices utils [7] datasets methods base other attached packages: [1] tximportData_1.8.0 tximport_1.8.0 [3] DESeq2_1.20.0 stringi_1.1.7 [5] survival_2.41-3 SummarizedExperiment_1.10.1 [7] DelayedArray_0.6.0 BiocParallel_1.14.1 [9] matrixStats_0.53.1 Biobase_2.40.0 [11] GenomicRanges_1.32.3 GenomeInfoDb_1.16.0 [13] IRanges_2.14.10 S4Vectors_0.18.2 [15] BiocGenerics_0.26.0 loaded via a namespace (and not attached): [1] bit64_0.9-7 splines_3.5.0 [3] Formula_1.2-3 latticeExtra_0.6-28 [5] blob_1.1.1 GenomeInfoDbData_1.1.0 [7] yaml_2.1.19 pillar_1.2.2 [9] RSQLite_2.1.1 backports_1.1.2 [11] lattice_0.20-35 digest_0.6.15 [13] RColorBrewer_1.1-2 XVector_0.20.0 [15] checkmate_1.8.5 colorspace_1.3-2 [17] htmltools_0.3.6 Matrix_1.2-14 [19] plyr_1.8.4 pkgconfig_2.0.1 [21] XML_3.98-1.11 genefilter_1.62.0 [23] zlibbioc_1.26.0 xtable_1.8-2 [25] scales_0.5.0 htmlTable_1.11.2 [27] tibble_1.4.2 annotate_1.58.0 [29] ggplot2_2.2.1 nnet_7.3-12 [31] lazyeval_0.2.1 magrittr_1.5 [33] memoise_1.1.0 foreign_0.8-70 [35] tools_3.5.0 data.table_1.11.2 [37] hms_0.4.2 stringr_1.3.1 [39] munsell_0.4.3 locfit_1.5-9.1 [41] cluster_2.0.7-1 AnnotationDbi_1.42.1 [43] compiler_3.5.0 rlang_0.2.0 [45] grid_3.5.0 RCurl_1.95-4.10 [47] rstudioapi_0.7 htmlwidgets_1.2 [49] bitops_1.0-6 base64enc_0.1-3 [51] gtable_0.2.0 DBI_1.0.0 [53] R6_2.2.2 gridExtra_2.3 [55] knitr_1.20 bit_1.1-13 [57] Hmisc_4.1-1 readr_1.1.1 [59] Rcpp_0.12.17 geneplotter_1.58.0 [61] rpart_4.1-13 acepack_1.4.1
Are there any problems in my script?
Thanks.
Changhan
When you say "What I want is", what is the basis for this desire?
It is a result of an example from DESeq2 vignette. (http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#p-values-and-adjusted-p-values)