limma tutorial for microarray data analysis
1
0
Entering edit mode
@aurinkibio-14614
Last seen 6.5 years ago

 hello, i am working on differential expression analysis of  cancer microarray data using R/ Bioconductor. my data have 4 sample for normal tissue and 4 for cancerous tissues. i got anonimous result that is Down regulated genes are 20104  no genes are upregulated . where i went wrong kindly suggest me. i am using following code in r  

 library(limma)
library(makecdfenv)
ovarian<-make.cdf.env("HGU133Plus2_Hs_ENSG.cdf")
abatch<-ReadAffy(cdfname='ovarian')
abatch
eset <- rma(abatch)
dh<-pData(abatch)
dh
disease<- c("normal","normal","normal","normal","cancer","cancer","cancer","cancer")
disease
design <- model.matrix(~factor(disease))
design
d<-colnames(design) <- c("normal","cancer")
d
fit <- lmFit(eset, design)
fit
names(fit)
cont.matrix <- makeContrasts(cancer-normal,levels=design)
cont.matrix
fit2  <- contrasts.fit(fit, cont.matrix)
fit2  <- eBayes(fit2)
colnames(fit2)
topTable(fit2,coef=1)
topTable(fit2,coef=1,adjust="fdr")
results <- decideTests(fit2)
results
summary(results)
vennDiagram(results)
output-                                                                                                                                                                                                                    result summary

 summary(results)
       cancer - normal
Down             20104
NotSig              14
Up                   0                                                                                      
microarray • 677 views
ADD COMMENT
0
Entering edit mode
@gordon-smyth
Last seen 12 hours ago
WEHI, Melbourne, Australia

I think you intended

design <- model.matrix(~ 0 + factor(disease))

If you add "0+" your code will work correctly.

ADD COMMENT

Login before adding your answer.

Traffic: 847 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6