I have perform differential analysis using deseq2. In the result I have many genes have very low padj. It is possible?
> res[which.min(res$padj),] log2 fold change (MAP): condition Myoepithelioma vs EMC Wald test p-value: condition Myoepithelioma vs EMC DataFrame with 1 row and 11 columns baseMean log2FoldChange lfcSE stat pvalue padj <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> ENSG00000150361 1289.267 -12.98314 0.7835716 -16.56919 1.163906e-61 1.875285e-57 ensembl entrez hgnc_symbol chromosome band <character> <integer> <character> <character> <character> ENSG00000150361 ENSG00000150361 57626 KLHL1 13 q21.33
subset(res,res$padj< 1*10^-20)
log2 fold change (MAP): condition Myoepithelioma vs EMC
Wald test p-value: condition Myoepithelioma vs EMC
DataFrame with 4 rows and 11 columns
baseMean log2FoldChange lfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
ENSG00000150361 1289.2669 -12.983144 0.7835716 -16.56919 1.163906e-61 1.875285e-57
ENSG00000184905 1047.7598 9.413017 0.9076872 10.37033 3.383477e-25 1.362864e-21
ENSG00000196850 972.6995 -4.283253 0.3794026 -11.28947 1.479300e-29 7.944829e-26
ENSG00000197696 482.4788 -7.368074 0.5813144 -12.67485 8.151262e-37 6.566656e-33
ensembl entrez hgnc_symbol chromosome band
<character> <integer> <character> <character> <character>
ENSG00000150361 ENSG00000150361 57626 KLHL1 13 q21.33
ENSG00000184905 ENSG00000184905 140597 TCEAL2 X q22.1
ENSG00000196850 ENSG00000196850 160760 PPTC7 12 q24.11
ENSG00000197696 ENSG00000197696 4828 NMB 15 q25.3
> sessionInfo() R version 3.3.2 (2016-10-31) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 16.04.3 LTS locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=it_IT.UTF-8 [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=it_IT.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=it_IT.UTF-8 LC_NAME=C LC_ADDRESS=C [10] LC_TELEPHONE=C LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] gplots_3.0.1 genefilter_1.56.0 limma_3.30.13 [4] biomaRt_2.30.0 reshape2_1.4.3 RColorBrewer_1.1-2 [7] ggplot2_2.2.1 pheatmap_1.0.8 DESeq2_1.14.1 [10] SummarizedExperiment_1.4.0 Biobase_2.34.0 GenomicRanges_1.26.4 [13] GenomeInfoDb_1.10.3 IRanges_2.8.2 S4Vectors_0.12.2 [16] BiocGenerics_0.20.0 RTCGAToolbox_2.4.0 loaded via a namespace (and not attached): [1] tidyr_0.7.2 bit64_0.9-7 splines_3.3.2 gtools_3.5.0 [5] Formula_1.2-2 assertthat_0.2.0 latticeExtra_0.6-28 blob_1.1.0 [9] pillar_1.1.0 RSQLite_2.0 backports_1.1.2 lattice_0.20-35 [13] glue_1.2.0 digest_0.6.14 XVector_0.14.1 checkmate_1.8.5 [17] QoRTs_1.1.8 colorspace_1.3-2 htmltools_0.3.6 Matrix_1.2-10 [21] plyr_1.8.4 XML_3.98-1.9 pkgconfig_2.0.1 zlibbioc_1.20.0 [25] purrr_0.2.4 xtable_1.8-2 RCircos_1.2.0 scales_0.5.0 [29] gdata_2.18.0 BiocParallel_1.8.2 htmlTable_1.11.0 tibble_1.4.1 [33] annotate_1.52.1 nnet_7.3-12 lazyeval_0.2.1 survival_2.41-3 [37] RJSONIO_1.3-0 magrittr_1.5 memoise_1.1.0 foreign_0.8-69 [41] tools_3.3.2 data.table_1.10.4-3 stringr_1.2.0 munsell_0.4.3 [45] locfit_1.5-9.1 cluster_2.0.6 AnnotationDbi_1.36.2 bindrcpp_0.2 [49] caTools_1.17.1 rlang_0.1.6 grid_3.3.2 RCurl_1.95-4.10 [53] rstudioapi_0.7 htmlwidgets_0.9 labeling_0.3 bitops_1.0-6 [57] base64enc_0.1-3 gtable_0.2.0 DBI_0.7 R6_2.2.2 [61] gridExtra_2.3 knitr_1.18 dplyr_0.7.4 bit_1.1-12 [65] bindr_0.1 Hmisc_4.1-1 KernSmooth_2.23-15 stringi_1.1.6 [69] Rcpp_0.12.14 geneplotter_1.52.0 rpart_4.1-12 acepack_1.4.1
thanks for the help..
the problem that I have all the data are in that situation...
You are testing the Intercept coefficient it says above. Use a design eg ~condition
thanks It was an error on the preparation on DESeqDataSetFromHTSeqCount so they not change that parameter.
Thanks s much!