Hi,
I have histone, broad-peak data, however some of the peaks are actually rather narrow. So what I can see happening is that the broader peaks are being nicely identified as differentially expressed by diffbind, but the narrow peaks which seem highly up-regulated (with big fold changes) are not reaching FDR significance. My interpretation is that there are less counts compared to broad peaks.
The code I used for differential peak analysis is as follows:
> samples <- dba(sampleSheet=diffbind_samples, peakCaller = "bed", peakFormat = "bed") > samples_counts <- dba.count(samples) > samples_counts <- dba.contrast(samples_counts, categories=DBA_CONDITION, minMembers=2) > samples_counts <- dba.analyze(samples_counts)
I wonder whether this is something you have come across before? I have tried playing around with "summits" function and "bFullLibrarySize" but not sure how I can best tackle this problem? To give you an idea here is the readout for one of the narrow peaks in question:
Chr | Start | End | Conc | Conc_vitd | Conc_eth | Fold | p-value | FDR | Called1 | Called2 | k27acvitd1 | k27acvitd2 | k27aceth1 | k27aceth2 | |
chr2 | 102918383 | 102918857 | 7.02 | 7.79 | 5.23 | 2.55 | 0.00444 | 0.513 | 2 | 1 | 217.33 | 225.1 | 69.3 | 6 |
So the eth condition goes from 69.3 and 6 to 217.33 and 225.1
and this is one of the broader peaks which is identified as differentially expressed:
Chr | Start | End | Conc | Conc_vitd | Conc_eth | Fold | p-value | FDR | Called1 | Called2 | k27acvitd1 | k27acvitd2 | k27aceth1 | k27aceth2 |
chr2 | 204693199 | 204696874 | 9.14 | 9.92 | 7.33 | 2.59 | 3.60E-06 | 0.00245 | 2 | 2 | 935.67 | 1004.41 | 256.79 | 65 |
Here is my sample sheet:
SampleID | Tissue | Factor | Condition | Treatment | Replicate | bamReads | ControlID | bamControl | Peaks | PeakCaller |
---|
1 |
k27acvitd1 |
cd4 |
k27ac |
vitd |
a |
1 |
Bowtie_1_27Ac_VitD.bam |
natinput |
Bowtie_1_NInput_Eth.bam |
27ac.vitD.don1.peaks.styleregion.250bp.mindist5kb_diffbind.bed |
bed |
2 |
k27acvitd2 |
cd4 |
k27ac |
vitd |
a |
2 |
Bowtie_2_27Ac_VitD.bam |
natinput |
Bowtie_1_NInput_Eth.bam |
27ac.vitD.don2.peaks.styleregion.250bp.mindist5kb.diffbind.bed |
bed |
3 |
k27aceth1 |
cd4 |
k27ac |
eth |
a |
1 |
Bowtie_1_27Ac_Eth.bam |
natinput |
Bowtie_1_NInput_Eth.bam |
27ac.eth.don1.peaks.styleregion.250bp.mindist5kb_diffbind.bed |
bed |
4 |
k27aceth2 |
cd4 |
k27ac |
eth |
a |
2 |
Bowtie_2_27Ac_Eth.bam |
natinput |
Bowtie_1_NInput_Eth.bam |
27ac.eth.don2.peaks.styleregion.250bp.mindist5kb.diffbind.bed |
bed |
sessionInfo() R version 3.4.1 (2017-06-30) Platform: x86_64-apple-darwin15.6.0 (64-bit) Running under: macOS Sierra 10.12.6 Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib locale: [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8 attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] readr_1.1.1 DiffBind_2.4.8 SummarizedExperiment_1.6.3 [4] DelayedArray_0.2.7 matrixStats_0.52.2 Biobase_2.36.2 [7] GenomicRanges_1.28.4 GenomeInfoDb_1.12.2 IRanges_2.10.2 [10] S4Vectors_0.14.3 BiocGenerics_0.22.0 loaded via a namespace (and not attached): [1] Category_2.42.1 bitops_1.0-6 bit64_0.9-7 RColorBrewer_1.1-2 [5] httr_1.3.1 tools_3.4.1 backports_1.1.0 R6_2.2.2 [9] rpart_4.1-11 KernSmooth_2.23-15 Hmisc_4.0-3 DBI_0.7 [13] lazyeval_0.2.0 colorspace_1.3-2 nnet_7.3-12 gridExtra_2.2.1 [17] DESeq2_1.16.1 bit_1.1-12 compiler_3.4.1 sendmailR_1.2-1 [21] graph_1.54.0 htmlTable_1.9 plotly_4.7.1 rtracklayer_1.36.4 [25] caTools_1.17.1 scales_0.5.0 checkmate_1.8.3 BatchJobs_1.6 [29] genefilter_1.58.1 RBGL_1.52.0 stringr_1.2.0 digest_0.6.12 [33] Rsamtools_1.28.0 foreign_0.8-69 AnnotationForge_1.18.1 XVector_0.16.0 [37] base64enc_0.1-3 pkgconfig_2.0.1 htmltools_0.3.6 limma_3.32.5 [41] htmlwidgets_0.9 rlang_0.1.2 RSQLite_2.0 BBmisc_1.11 [45] GOstats_2.42.0 bindr_0.1 hwriter_1.3.2 jsonlite_1.5 [49] BiocParallel_1.10.1 gtools_3.5.0 acepack_1.4.1 dplyr_0.7.2 [53] RCurl_1.95-4.8 magrittr_1.5 GO.db_3.4.1 GenomeInfoDbData_0.99.0 [57] Formula_1.2-2 Matrix_1.2-11 Rcpp_0.12.12 munsell_0.4.3 [61] stringi_1.1.5 edgeR_3.18.1 zlibbioc_1.22.0 fail_1.3 [65] gplots_3.0.1 plyr_1.8.4 grid_3.4.1 blob_1.1.0 [69] ggrepel_0.6.5 gdata_2.18.0 lattice_0.20-35 Biostrings_2.44.2 [73] splines_3.4.1 GenomicFeatures_1.28.4 annotate_1.54.0 hms_0.3 [77] locfit_1.5-9.1 knitr_1.17 rjson_0.2.15 systemPipeR_1.10.2 [81] geneplotter_1.54.0 biomaRt_2.32.1 XML_3.98-1.9 glue_1.1.1 [85] ShortRead_1.34.0 latticeExtra_0.6-28 data.table_1.10.4 gtable_0.2.0 [89] purrr_0.2.3 tidyr_0.7.0 amap_0.8-14 assertthat_0.2.0 [93] ggplot2_2.2.1 xtable_1.8-2 survival_2.41-3 viridisLite_0.2.0 [97] pheatmap_1.0.8 tibble_1.3.4 GenomicAlignments_1.12.2 AnnotationDbi_1.38.2 [101] memoise_1.1.0 bindrcpp_0.2 cluster_2.0.6 brew_1.0-6 [105] GSEABase_1.38.1